Derivadas 𝒚 = cte. Integrales [𝒇𝟏 (𝒙) ± 𝒇𝟐 (𝒙) ± ⋯ ± 𝒇𝒏 (𝒙)]dx= 𝒚′ = 0 = 𝒚 =x 𝒚′ = 1 𝒚= 𝒖 𝒚′ = 𝒖′ 𝒚 = 𝒄. 𝒙 𝒚′ = c 𝒚 = 𝒄. 𝒖 𝒚′ = 𝒄. 𝒖′ 𝒚= 𝒖±𝒗±𝒘±⋯ 𝒚′ = 𝒖′ ± 𝒗′ ± 𝒘′ ± ⋯ 𝒚 = 𝒖.v 𝒚′ = 𝒖'.v + u.v' 𝒖 y= 𝒗 𝒖´. 𝒗 −𝒖 . 𝒗´ y′ = 𝒗𝟐 𝑪𝒆𝒏𝒕𝒓𝒐 𝒅𝒆 𝑬𝒔𝒕𝒖𝒅𝒊𝒂𝒏𝒕𝒆𝒔 𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒂𝒓𝒊𝒐𝒔 𝑻𝒆𝒄𝒏𝒐𝒍𝒐𝒈𝒊𝒄𝒐𝒔 𝑰𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒊𝒆𝒏𝒕𝒆𝒔 𝑼𝑻𝑵 − 𝑭𝑹𝑽𝑴 𝒚 = 𝒙𝒎 𝒚′ = 𝒎. 𝒙𝒎−𝟏 𝟏 . 𝒍𝒐𝒈𝒂 (𝒆) 𝒙 𝟏 𝒚′ = 𝒍 𝒙 𝒚 = 𝒍𝒐𝒈𝒂 (𝒙) 𝒚′ = 𝒚 = 𝒍𝒏 (𝒙) 𝒚′ = 𝒎. 𝒖𝒎−𝟏 . 𝒖′ 𝒚 = 𝒖𝒎 𝒚 = 𝒍𝒐𝒈𝒂 (𝒖) 𝒚′ = 𝒚 = 𝒍𝒏 (𝒖) 𝟏 ′ . 𝒖 . 𝒍𝒐𝒈𝒂 (𝒆) 𝒖 𝟏 𝒚′ = . 𝒖′𝒍 𝒖 𝒚 = 𝒂𝒙 𝒚′ = 𝒂𝒙 . 𝑳𝒏(𝒂) 𝒚 = 𝒂𝒖 𝒚′ = 𝒂𝒖 . 𝒖′. 𝑳𝒏(𝒂) 𝒚 = 𝒆𝒙 𝒚′ = 𝒆𝒙 𝒚 = 𝒆𝒖 𝒚′ = 𝒆𝒖 . 𝒖′ 𝒚 = 𝒔𝒆𝒏 (𝒙) 𝒚′ = 𝒄𝒐𝒔 (𝒙) 𝒚 = 𝒔𝒆𝒏 (𝒖) 𝒚′ = 𝒖′ . 𝒄𝒐𝒔 (𝒖) 𝒚 = 𝒄𝒐𝒔 (𝒖) 𝒚′ = −𝒖′ . 𝒔𝒆𝒏 (𝒖) 𝒚 = 𝒄𝒐𝒔 (𝒙) 𝒚′ = −𝒔𝒆𝒏 (𝒙) 𝒚 = 𝒕𝒈 (𝒙) 𝟏 𝒚′ = 𝒄𝒐𝒔𝟐 (𝒙) 𝟐 𝟏 𝒚'= 𝟐 . 𝒖′ 𝒄𝒐𝒔 (𝒖) 𝒚 = 𝒕𝒈 (𝒖) 𝟐 = (𝟏 + 𝒕𝒈 𝒙)=sec (𝒙) 𝒚′ = 𝒚 = 𝒄𝒐𝒕𝒈 (𝒙) −𝟏 𝒔𝒆𝒏𝟐 (𝒙) = −(𝟏 + 𝒄𝒐𝒕𝒈𝟐 𝒙)=−cosec𝟐 (𝒙) 𝒚 = 𝒔𝒆𝒄 (𝒖) 𝒚 = −𝒄𝒐𝒔𝒆𝒄 𝒙 . 𝒄𝒐𝒕𝒈(𝒙) 𝒚 = 𝒄𝒐𝒔𝒆𝒄 (𝒖) 𝒚 = 𝒂𝒓𝒄𝒔𝒆𝒏 (𝒙) 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒔 (𝒙) 𝒚 = 𝒂𝒓𝒄𝒕𝒈 (𝒙) 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒕𝒈 (𝒙) 𝒚 = 𝒂𝒓𝒄𝒔𝒆𝒄 (𝒙) 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒔𝒆𝒄 (𝒙) ′ 𝒚′ = 𝒚′ = 𝟏 𝟏 − 𝒙𝟐 −𝟏 𝟏 − 𝒙𝟐 𝟏 𝒚′ = 𝟏 + 𝒙𝟐 −𝟏 𝒚′ = 𝟏 + 𝒙𝟐 𝟏 𝒚′ = 𝒙. 𝒙𝟐 − 𝟏 𝒚'= −𝟏 𝒙. 𝒙𝟐 −𝟏 𝒚′ = −𝟏 .u' 𝒔𝒆𝒏𝟐 (𝒖) = −𝒖′(𝟏 + 𝒄𝒐𝒕𝒈𝟐 𝒖)=−u′ . cosec 𝟐 (𝒖) 𝒚′ = 𝒔𝒆𝒄 𝒙 . 𝒕𝒈(𝒙) 𝒚 = 𝒔𝒆𝒄 (𝒙) 𝒚 = 𝒄𝒐𝒔𝒆𝒄 (𝒙) = 𝒖′(𝟏 + 𝒕𝒈𝟐 𝒖)= u′ . sec𝟐 (𝒖) 𝒚 = 𝒄𝒐𝒕𝒈 (𝒖) 𝒚′ = 𝒖′. 𝒔𝒆𝒄 𝒖 . 𝒕𝒈(𝒖) ′ 𝒚 = −𝒖. 𝒄𝒐𝒔𝒆𝒄 𝒖 . 𝒄𝒐𝒕𝒈(𝒖) 𝒚 = 𝒂𝒓𝒄𝒔𝒆𝒏 (𝒖) 𝒚′ = 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒔 (𝒖) ′ 𝟏 − 𝒖𝟐 −𝟏 . 𝒖′ 𝒚 = 𝒂𝒓𝒄𝒔𝒆𝒄 (𝒖) . 𝒖′ 𝟏 − 𝒖𝟐 𝟏 𝒚′ = . 𝒖′ 𝟏 + 𝒖𝟐 −𝟏 𝒚′ = . 𝒖′ 𝟏 + 𝒖𝟐 𝟏 𝒚′ = . 𝒖′ 𝒖. 𝒖𝟐 − 𝟏 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒔𝒆𝒄 (𝒖) 𝒚'= 𝒚 = 𝒂𝒓𝒄𝒕𝒈 (𝒖) 𝒚 = 𝒂𝒓𝒄𝒄𝒐𝒕𝒈 (𝒖) 𝒚 = 𝟏 −𝟏 𝒖. 𝒖𝟐 −𝟏 𝒇𝟐 𝒙 . 𝒅𝒙 ± ⋯ ± 𝒖. 𝒗′ = 𝒖. 𝒗 − 𝟏 𝒚′ = 𝒖𝒗 [𝒗′ . 𝑳𝒏 𝒖 + 𝒗. . 𝒖′] 𝒖 𝒚 = 𝒖𝒗 (𝒇𝟏 𝒙 . 𝒅𝒙 ± . 𝒖′ 𝒗. 𝒖′ 𝒅𝒙 = 𝒙 + 𝒄 𝒙𝒎 . 𝒅𝒙 = 𝒇𝒏 (𝒙).dx (int. por partes) (c= cte. de integracion) 𝒙𝒎+𝟏 + 𝒄 (∀𝒎 ≠ −𝟏) 𝒎+𝟏 𝑪𝒆𝒏𝒕𝒓𝒐 𝒅𝒆 𝑬𝒔𝒕𝒖𝒅𝒊𝒂𝒏𝒕𝒆𝒔 𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒂𝒓𝒊𝒐𝒔 𝑻𝒆𝒄𝒏𝒐𝒍𝒐𝒈𝒊𝒄𝒐𝒔 𝑰𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒊𝒆𝒏𝒕𝒆𝒔 𝑼𝑻𝑵 − 𝑭𝑹𝑽𝑴 𝒖𝒎 . 𝒖′ . 𝒅𝒙 = 𝒖𝒎+𝟏 + 𝒄 (∀𝒎 ≠ −𝟏) 𝒎+𝟏 𝟏 . 𝒅𝒙 = 𝑳𝒏(𝒙) + 𝒄 𝒙 𝟏 ′ . 𝒖 . 𝒅𝒙 = 𝑳𝒏(𝒖) + 𝒄 𝒖 𝒆𝒙 . 𝒅𝒙 = 𝒆𝒙 + 𝒄 𝒆𝒖 . 𝒖′. 𝒅𝒙 = 𝒆𝒖 + 𝒄 𝒂𝒙 . 𝒅𝒙 = 𝒂 +𝒄 𝑳𝒏(𝒂) 𝒂𝒖 . 𝒖′. 𝒅𝒙 = 𝒂𝒖 +𝒄 𝑳𝒏(𝒂) 𝒔𝒆𝒏 𝒙 . 𝒅𝒙 = − 𝒄𝒐𝒔 𝒙 + 𝒄 𝒔𝒆𝒏 𝒖 , 𝒖′. 𝒅𝒙 = − 𝒄𝒐𝒔 𝒖 + 𝒄 𝒄𝒐𝒔 𝒙 . 𝒅𝒙 = 𝒔𝒆𝒏 𝒙 + 𝒄 𝒄𝒐𝒔 𝒖 . 𝒖′ . 𝒅𝒙 = 𝒔𝒆𝒏 𝒖 + 𝒄 𝟏 . 𝒅𝒙 = 𝒕𝒈 𝒙 + 𝒄 𝒄𝒐𝒔𝟐 (𝒙) 𝟏 . 𝒅𝒙 = −𝒄𝒐𝒕𝒈 𝒙 + 𝒄 𝒔𝒆𝒏𝟐 (𝒙) 𝟏 . 𝒖′. 𝒅𝒙 = 𝒕𝒈 𝒖 + 𝒄 𝒄𝒐𝒔𝟐 (𝒖) 𝟏 . 𝒖′. 𝒅𝒙 = −𝒄𝒐𝒕𝒈 𝒖 + 𝒄 𝒔𝒆𝒏𝟐 (𝒖) 𝐬𝐞𝐜 𝒙 . 𝒕𝒈 𝒙 . 𝒅𝒙 = 𝐬𝐞𝐜 𝒙 + 𝒄 𝐬𝐞𝐜 𝒖 . 𝒕𝒈 𝒖 . 𝒖′ . 𝒅𝒙 = 𝐬𝐞𝐜 𝒖 + 𝒄 𝐜𝐨𝐬𝐞𝐜 𝒙 . 𝒄𝒐𝒕𝒈 𝒙 . 𝒅𝒙 = −𝒄𝒐 𝐬𝐞𝐜 𝒙 + 𝒄 𝐜𝐨𝐬𝐞𝐜 𝒖 . 𝒄𝒐𝒕𝒈 𝒖 . 𝒖′. 𝒅𝒙 = −𝒄𝒐𝐬𝐞𝐜 𝒙 + 𝒄 𝟏 { { . 𝒅𝒙 = 𝒂𝒓𝒄 𝒔𝒆𝒏 𝒙 + 𝒄 −𝒂𝒓𝒄 𝒄𝒐𝒔 𝒙 + 𝒄 𝟏 − 𝒙𝟐 𝟏 𝒂𝒓𝒄 𝒕𝒈 𝒙 + 𝒄 . 𝒅𝒙 = 𝟐 −𝒂𝒓𝒄 𝒄𝒐𝒕𝒈 𝒙 + 𝒄 𝟏+𝒙 𝟏 𝒂𝒓𝒄 𝒔𝒆𝒄 𝒙 + 𝒄 . 𝒅𝒙 = −𝒂𝒓𝒄 𝒄𝒐𝒔𝒆𝒄 𝒙 + 𝒄 𝟐 𝒙. 𝒙 − 𝟏 { 𝟏 𝟏 − 𝒖𝟐 . 𝒖′. 𝒅𝒙 = { { 𝒂𝒓𝒄 𝒔𝒆𝒏 𝒖 + 𝒄 −𝒂𝒓𝒄 𝒄𝒐𝒔 𝒖 + 𝒄 𝟏 𝒂𝒓𝒄 𝒕𝒈 𝒖 + 𝒄 . 𝒖′. 𝒅𝒙 = 𝟐 −𝒂𝒓𝒄 𝒄𝒐𝒕𝒈 𝒖 + 𝒄 𝟏+𝒖 𝟏 𝒂𝒓𝒄 𝒔𝒆𝒄 𝒖 + 𝒄 . 𝒖′. 𝒅𝒙 = −𝒂𝒓𝒄 𝒄𝒐𝒔𝒆𝒄 𝒖 + 𝒄 𝒖. 𝒖𝟐 − 𝟏 Todo el año junto a vos !!! { y^′=u 〖 ñ v ) "[v′.Ln(u)+v." 1/u.u′ 〗^( "]"