Subido por Sebastian Eguiluz

ab

Anuncio
Diseñar la escalera, considerando como resistencia de concreto 𝑓 ′ 𝑐 = 210 𝑘𝑔/𝑐𝑚2, 𝑓𝑦 =
4200𝑘𝑔/𝑐𝑚2, uso: Biblioteca, Paso = P1, Contrapaso = CP1
DATOS:
𝑘𝑔𝑓
𝑓 ′ 𝑐 ≔ 210
𝑐𝑚2
𝑓𝑦 ≔ 4200
𝑘𝑔𝑓
𝑐𝑚2
𝑢𝑠𝑜 ∶= "𝑏𝑖𝑏𝑙𝑖𝑜𝑡𝑒𝑐𝑎"
𝑠. 𝑐 ≔ 400
𝑘𝑔𝑓
𝑚2
𝑝𝑒𝑠𝑜 ∶= 2400
𝑎𝑐𝑎𝑏𝑎𝑑𝑜 ≔ 100
𝑡𝑎𝑟𝑟𝑎𝑗𝑒𝑜 ≔ 50
𝑘𝑔𝑓
𝑚2
𝑘𝑔𝑓
𝑚3
GEOMETRIA:
𝐶𝑃 ∶= 𝐶𝑃1 = 17 𝑐𝑚
𝑃 ∶= 𝑃1 = 32 𝑐𝑚
#𝑡𝑟𝑎𝑚𝑜1 ∶= 15
𝑏 ∶= 𝐵1 = 1.25 𝑚
𝑑𝑒𝑠𝑐𝑎𝑠𝑛𝑠𝑜 ≔ 0
1. DIMENSIONAMIENTO:
Calculo del espesor de la garganta
𝑙1 ≔ #𝑡𝑟𝑎𝑚𝑜1. 𝑃 = 4.8 𝑚
𝐿 ≔ #𝑡𝑟𝑎𝑚𝑜1. 𝑃 + 𝑑𝑒𝑠𝑐𝑎𝑛𝑠𝑜 = 4.8 𝑚
𝐿
0.24
20
| 𝐿 |
𝑇 ∶=
, 1 𝑐𝑚 = [0.20] 𝑚
0.15
| 25 |
0.20
0.03. 𝐿
( 0.04. 𝐿
)
𝑘𝑔𝑓
𝑚2
𝑇𝑝𝑟𝑜𝑚 ≔ 𝑚𝑎𝑥(𝑚𝑎𝑥(𝑇), 15 𝑐𝑚) = 24 𝑐𝑚
𝑡 ≔ 𝐶𝑒𝑖𝑙⟨𝑚𝑒𝑎𝑛⟨𝑇𝑝𝑟𝑜𝑚 , 15 𝑐𝑚⟩, 1 𝑐𝑚⟩ = 0.2 𝑚
𝑡 ≔ 15 𝑐𝑚
Calculo de la altura promedio
𝜃 ≔ 𝑐𝑜𝑠(𝜃) =
𝑃
√𝑃2
+
𝑆𝑜𝑙𝑣𝑒,𝜃
𝐶𝑃2
→
𝑎𝑐𝑜𝑠 (
32. 𝑐𝑚. √1313
1313. √𝑐𝑚2
) = 27.979 𝑑𝑒𝑔
𝑡
𝐶𝑃
ℎ𝑚 ≔ 𝐶𝑒𝑖𝑙 (
+
, 1 𝑐𝑚) = 26 𝑐𝑚
𝑐𝑜𝑠(𝜃)
2
𝑡
𝐶𝑃
+
= 0.255 𝑚
𝑐𝑜𝑠(𝜃)
2
2. METRADO DE CARGAS – TRAMO INCLINADO:
Carga Muerta (Wd)
𝑘𝑔𝑓
𝑝𝑒𝑠𝑜. 𝑙𝑜𝑠𝑎 ∶= 𝑝𝑒𝑠𝑜. 𝑏. ℎ𝑚 = 780.00
𝑚
𝑘𝑔𝑓
𝑝𝑒𝑠𝑜. 𝑎𝑐𝑎𝑏𝑎𝑑𝑜𝑠 ∶= 𝑎𝑐𝑎𝑏𝑎𝑑𝑜. 𝑏 = 125.00
𝑚
𝑘𝑔𝑓
𝑝𝑒𝑠𝑜. 𝑡𝑎𝑟𝑟𝑎𝑗𝑒𝑜 ∶= 𝑡𝑎𝑟𝑟𝑎𝑗𝑒𝑜. 𝑏 = 62.50
𝑚
𝑊𝑑. 1 = 𝑝𝑒𝑠𝑜. 𝑙𝑜𝑠𝑎 + 𝑝𝑒𝑠𝑜. 𝑎𝑐𝑎𝑏𝑎𝑑𝑜𝑠 + 𝑝𝑒𝑠𝑜. 𝑡𝑎𝑟𝑟𝑎𝑗𝑒𝑜 = 967.50
𝑘𝑔𝑓
𝑚
Carga Viva (Wl)
𝑊𝑙. 1 ∶= 𝑠. 𝑐.∙ 𝑏 = 500
𝑘𝑔𝑓
𝑚
Carga Ultima (Wu)
𝑘𝑔𝑓
𝑚
3. ANALISIS ESTRUCTURAL –MOMENTOS FLECTORES
𝑊𝑢. 1 ∶= 1.4 ∙ 𝑊𝑑. 1 + 1.7 ∙ 𝑊𝑙. 1 = 2204.50
𝑙𝑜𝑛𝑔 ∶= [𝑙1] = [4.8 ]𝑚
𝑊𝑢. 𝑡 ≔ [𝑊𝑢. 1] = [2204.50]
𝑊𝑢 ∶= 𝑚𝑒𝑎𝑛(𝑊𝑢. 𝑡) = 2204.50
Momento Flector
12
𝑑. sup ≔ [ ] 𝑑. inf ≔ [10]
12
# inf ≔ 𝑟𝑜𝑤𝑠(𝑑. 𝑖𝑛𝑓) = 1
# sup ≔ 𝑟𝑜𝑤𝑠(𝑑. 𝑠𝑢𝑝) = 2
𝐿. inf ≔ 𝑙𝑜𝑛𝑔
𝑘𝑔𝑓
𝑚
𝑙𝑜𝑛𝑔 ∶= [𝑙1] = [4.8] 𝑚
𝐿. 𝑠𝑢𝑝1 ∶= 𝑙𝑜𝑛𝑔1 = 4.8 𝑚
𝐿. 𝑠𝑢𝑝2 ∶= 𝑙𝑜𝑛𝑔1 = 4.8 𝑚
4.8
𝐿. 𝑠𝑢𝑝 = [ ] 𝑚
4.8
𝑞𝑤𝑒 ∶= 1. . #𝑖𝑛𝑓
𝑊𝑢. 𝐿. 𝑖𝑛𝑓𝑞𝑤𝑒 2
𝑀𝑢. 𝑖𝑛𝑓𝑞𝑤𝑒 ≔
= [5079.17] 𝑚. 𝑘𝑔𝑓
𝑑. 𝑖𝑛𝑓𝑞𝑤𝑒
𝑀𝑢. 𝑖𝑛𝑓. max ≔ 𝑚𝑎𝑥(𝑀𝑢. 𝑖𝑛𝑓) = 5079.17 𝑘𝑔𝑓. 𝑚
𝑞𝑤 ∶= 1. . #𝑠𝑢𝑝
𝑊𝑢. 𝐿. 𝑠𝑢𝑝𝑞𝑤 2
4232.64
𝑀𝑢. 𝑠𝑢𝑝𝑞𝑤 ≔
=[
] 𝑚. 𝑘𝑔𝑓
4232.64
𝑑. 𝑠𝑢𝑝𝑞𝑤
𝑀𝑢. 𝑠𝑢𝑝. 𝑚𝑎𝑥 ≔ (𝑀𝑢. 𝑠𝑢𝑝) = 4232.64
𝑘𝑔𝑓
𝑚
6. ANALISIS ESTRUCTURAL –MOMENTOS FLECTORES
𝑑 ≔ 𝑡 − 3 𝑐𝑚 = 0.12 𝑚
∅ ≔ 0.90
Acero Superior Continuo
𝑎 ≔ 𝑑 − √𝑑2 − 2.
𝑀𝑢. 𝑠𝑢𝑝. 𝑚𝑎𝑥
= 1.91 𝑐𝑚
0.85. ∅. 𝑓 ′ 𝑐. 𝑏
𝑀𝑢. 𝑠𝑢𝑝. 𝑚𝑎𝑥
𝑓𝑦
2
𝑎 ≔ 𝐴𝑠.
= 1.91 𝑐𝑚
𝑎 = 10.14 𝑐𝑚
0.85. 𝑓 ′ 𝑐. 𝑏
∅. 𝑓𝑦. (𝑑 − 2)
𝐴𝑠. 𝑚𝑖𝑛 ≔ 0.0018 ∙ 𝑏 ∙ 𝑡 = 3.375 𝑐𝑚2
Distancia entre Varillas
𝑒𝑠𝑝. 𝑚𝑎𝑥 ≔ 𝑚𝑖𝑛(3. 𝑡, 30 𝑐𝑚) → 𝑚𝑖𝑛(45 ∙ 𝑐𝑚, 30 ∙ 𝑐𝑚) = 0.3 𝑚
3
8
1
𝐴𝑠. 𝑐𝑜𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ≔
𝑖𝑛
2
5
[8]
𝐴𝑠. 𝑐𝑜𝑚𝑒𝑟𝑐𝑖𝑎𝑙 2
15
𝜋. (
)
2
𝑒𝑠𝑝 ≔ 𝐹𝑙𝑜𝑜𝑟 (
. 90 𝑐𝑚, 5 𝑐𝑚) = [30] 𝑐𝑚
𝐴𝑠. 𝑚𝑖𝑛
50
𝐴𝑠 =
Distancia entre Varillas
ℎ. 1 ≔ (#𝑡𝑟𝑎𝑚𝑜1 + 1) ∙ 𝐶𝑃 = 2.72 𝑚
𝐿𝑛 ≔ 𝑅𝑜𝑢𝑛𝑑 (√ℎ. 12 + 𝑙12 , 1𝑐𝑚) = 5.52 𝑚
𝐿𝑛
𝐿. 𝑟𝑒𝑓 ≔ 𝐶𝑒𝑖𝑙 ( , 5𝑐𝑚) = 1.85 𝑚
3
Acero Inferior Continuo
𝑎 ≔ 𝑑 − √𝑑2 − 2.
𝑀𝑢. 𝑖𝑛𝑓. 𝑚𝑎𝑥
= 2.335 𝑐𝑚
0.85. ∅. 𝑓 ′ 𝑐. 𝑏
𝑀𝑢. 𝑖𝑛𝑓. 𝑚𝑎𝑥
𝑓𝑦
2
𝑎 ≔ 𝐴𝑠.
= 2.335 𝑐𝑚
𝑎 = 12.4 𝑐𝑚
0.85. 𝑓 ′ 𝑐. 𝑏
∅. 𝑓𝑦. (𝑑 − 2)
𝐴𝑠. 𝑚𝑖𝑛 ≔ 0.0018 ∙ 𝑏 ∙ 𝑡 = 3.375 𝑐𝑚2
Distancia entre Varillas
𝑒𝑠𝑝. 𝑚𝑎𝑥 ≔ 𝑚𝑖𝑛(3. 𝑡, 30 𝑐𝑚) → 𝑚𝑖𝑛(45 ∙ 𝑐𝑚, 30 ∙ 𝑐𝑚) = 0.3 𝑚
3
8
1
𝐴𝑠. 𝑐𝑜𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ≔
𝑖𝑛
2
5
[8]
𝐴𝑠. 𝑐𝑜𝑚𝑒𝑟𝑐𝑖𝑎𝑙 2
15
𝜋. (
)
2
𝑒𝑠𝑝 ≔ 𝐹𝑙𝑜𝑜𝑟 (
∙ 90 𝑐𝑚, 5 𝑐𝑚) = [30] 𝑐𝑚
𝐴𝑠. 𝑚𝑖𝑛
50
𝐴𝑠 =
Descargar