Tests for the Pazo fonts Font Outlines Version 1.003, 17 May 2002 by Diego Puga <[email protected]> 1. Glyphs from the ‘raw’ Pazo fonts Γ,∆,Θ,Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω, Γ,∆,Θ,Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω, α,β,γ,δ,e,ζ,η,θ,ι,κ,λ,µ, ν,ξ,π,ρ,σ,τ,υ,φ,χ,ψ,ω, ε,ϑ,v,$,ς,ϕ, ∂,∞,∝,∅,, ,€, €, Γ,∆,Θ,Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω, Γ,∆,Θ,Λ,Ξ,Π,Σ,Υ ,Φ,Ψ,Ω, α,β,γ,δ,e,ζ,η,θ,ι,κ,λ,µ, ν,ξ,π,ρ,σ,τ,υ,φ,χ,ψ,ω, ε,ϑ,v,$,ς,ϕ, ∂,∞,∝,∅,, ,€, € , 1, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, ∑, ∏, ä, 1 2. Tests for the virtual math fonts Math Alphabets Math Italic (\mathnormal) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ,∆,E, Z, H, Θ,I, K, Λ,M, N, Ξ,O, Π,P, Σ,T, Υ,Φ,X, Ψ,Ω, α,β,γ,δ,e,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o, π,ρ,σ,τ,υ,φ,χ,ψ,ω,ε,ϑ,v,$,ς,ϕ, Math Roman (\mathrm) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, Math Upright Greek A, B, Γ,∆,E, Z, H, Θ,I, K, Λ,M, N, Ξ,O, Π,P, Σ,T, Υ,Φ,X, Ψ,Ω, Math Italic Bold (\mathbold) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V , W, X, Y, Z, a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ,∆,E, Z, H, Θ,I, K, Λ,M, N, Ξ,O, Π,P, Σ,T, Υ ,Φ,X, Ψ,Ω, α,β,γ,δ,e,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o, π,ρ,σ,τ,υ,φ,χ,ψ,ω,ε,ϑ,v,$,ς,ϕ, Math Bold (\mathbf) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ,∆,E, Z, H, Θ,I, K, Λ,M, N, Ξ,O, Π,P, Σ,T, Υ,Φ,X, Ψ,Ω, Calligraphic (\mathcal) A, B, C, D, E , F , G, H, I, J , K, L, M, N , O, P, Q, R, S, T , U , V, W, X , Y, Z, Blackboard Bold (\mathbb) 1, A, B, C, D, E, F, G, H,I, J, K, L, M, N, O, P, Q,R, S, T, U, V, W, X, Y, Z, 2 Character Sidebearings |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M|+ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z|+ |a| + |b| + |c| + |d| + |e| + | f | + |g| + |h| + |i| + |j| + |k| + |l| + |m|+ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z|+ |A| + |B| + |Γ| + |∆| + |E| + |Z| + |H| + |Θ| + |I| + |K| + |Λ| + |M|+ |N| + |Ξ| + |O| + |Π| + |P| + |Σ| + |T| + |Υ| + |Φ| + |X| + |Ψ| + |Ω|+ |α| + |β| + |γ| + |δ| + |e| + |ζ| + |η| + |θ| + |ι| + |κ| + |λ| + |µ|+ |ν| + |ξ| + |o| + |π| + |ρ| + |σ| + |τ| + |υ| + |φ| + |χ| + |ψ| + |ω|+ |ε| + |ϑ| + |v| + |$| + |ς| + |ϕ|+ |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M|+ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z|+ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m|+ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z|+ |A| + |B| + |Γ| + |∆| + |E| + |Z| + |H| + |Θ| + |I| + |K| + |Λ| + |M|+ |N| + |Ξ| + |O| + |Π| + |P| + |Σ| + |T| + |Υ| + |Φ| + |X| + |Ψ| + |Ω|+ |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M|+ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V | + |W | + |X| + |Y| + |Z|+ |a| + |b| + |c| + |d| + |e| + | f | + |g| + |h| + |i| + |j| + |k| + |l| + |m|+ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z|+ |A| + |B| + |Γ| + |∆| + |E| + |Z| + |H| + |Θ| + |I| + |K| + |Λ| + |M|+ |N| + |Ξ| + |O| + |Π| + |P| + |Σ| + |T| + |Υ | + |Φ| + |X| + |Ψ| + |Ω|+ |α| + |β| + |γ| + |δ| + |e| + |ζ| + |η| + |θ| + |ι| + |κ| + |λ| + |µ|+ |ν| + |ξ| + |o| + |π| + |ρ| + |σ| + |τ| + |υ| + |φ| + |χ| + |ψ| + |ω|+ |ε| + |ϑ| + |v| + |$| + |ς| + |ϕ|+ |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M|+ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z|+ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m|+ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z|+ |A| + |B| + |Γ| + |∆| + |E| + |Z| + |H| + |Θ| + |I| + |K| + |Λ| + |M|+ |N| + |Ξ| + |O| + |Π| + |P| + |Σ| + |T| + |Υ| + |Φ| + |X| + |Ψ| + |Ω|+ |1| + |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H|+ |I| + |J| + |K| + |L| + |M| + |N| + |O| + |P| + |Q|+ |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z|+ 3 Superscript positioning A2 + B2 + C 2 + D 2 + E2 + F 2 + G 2 + H 2 + I 2 + J 2 + K 2 + L2 + M 2 + N 2 + O2 + P2 + Q2 + R2 + S2 + T 2 + U 2 + V 2 + W 2 + X 2 + Y 2 + Z 2 + a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + i 2 + j2 + k 2 + l 2 + m2 + n2 + o 2 + p2 + q2 + r 2 + s2 + t2 + u2 + v2 + w2 + x 2 + y2 + z2 + A2 + B2 + Γ2 + ∆2 + E2 + Z2 + H 2 + Θ2 + I 2 + K2 + Λ2 + M2 + N 2 + Ξ2 + O2 + Π 2 + P2 + Σ2 + T 2 + Υ 2 + Φ2 + X 2 + Ψ 2 + Ω2 + α2 + β2 + γ2 + δ2 + e2 + ζ 2 + η 2 + θ 2 + ι2 + κ 2 + λ2 + µ2 + ν2 + ξ 2 + o 2 + π 2 + ρ2 + σ 2 + τ 2 + υ2 + φ2 + χ2 + ψ2 + ω 2 + ε2 + ϑ 2 + v 2 + $2 + ς2 + ϕ2 + A2 + B2 + C2 + D2 + E2 + F2 + G2 + H2 + I2 + J2 + K2 + L2 + M2 + N2 + O2 + P2 + Q2 + R2 + S2 + T2 + U2 + V2 + W2 + X2 + Y2 + Z2 + a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 + j2 + k2 + l2 + m2 + n2 + o2 + p2 + q2 + r2 + s2 + t2 + u2 + v2 + w2 + x2 + y2 + z2 + A2 + B2 + Γ2 + ∆2 + E2 + Z2 + H2 + Θ2 + I2 + K2 + Λ2 + M2 + N2 + Ξ2 + O2 + Π2 + P2 + Σ2 + T2 + Υ2 + Φ2 + X2 + Ψ2 + Ω2 + A2 + B2 + C 2 + D 2 + E2 + F 2 + G 2 + H 2 + I 2 + J 2 + K 2 + L2 + M 2 + N 2 + O2 + P 2 + Q2 + R2 + S2 + T 2 + U 2 + V 2 + W 2 + X 2 + Y 2 + Z 2 + a2 + b2 + c2 + d2 + e2 + f 2 + g 2 + h2 + i 2 + j2 + k2 + l 2 + m2 + n2 + o2 + p2 + q2 + r 2 + s2 + t 2 + u2 + v2 + w2 + x2 + y2 + z2 + A2 + B2 + Γ 2 + ∆2 + E2 + Z 2 + H 2 + Θ2 + I 2 + K 2 + Λ2 + M 2 + N 2 + Ξ2 + O2 + Π 2 + P 2 + Σ 2 + T 2 + Υ 2 + Φ2 + X 2 + Ψ 2 + Ω2 + α2 + β2 + γ2 + δ2 + e2 + ζ 2 + η2 + θ2 + ι2 + κ2 + λ2 + µ2 + ν2 + ξ 2 + o2 + π 2 + ρ2 + σ 2 + τ 2 + υ2 + φ2 + χ2 + ψ2 + ω2 + ε2 + ϑ 2 + v2 + $2 + ς2 + ϕ2 + A2 + B2 + C2 + D2 + E2 + F2 + G2 + H2 + I2 + J2 + K2 + L2 + M2 + N2 + O2 + P2 + Q2 + R2 + S2 + T2 + U2 + V2 + W2 + X2 + Y2 + Z2 + a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 + j2 + k2 + l2 + m2 + n2 + o2 + p2 + q2 + r2 + s2 + t2 + u2 + v2 + w2 + x2 + y2 + z2 + A2 + B2 + Γ2 + ∆2 + E2 + Z2 + H2 + Θ2 + I2 + K2 + Λ2 + M2 + N2 + Ξ2 + O2 + Π2 + P2 + Σ2 + T2 + Υ2 + Φ2 + X2 + Ψ2 + Ω2 + 12 + A2 + B2 + C2 + D2 + E2 + F2 + G2 + H2 + I2 + J2 + K2 + L2 + M2 + N2 + O2 + P2 + Q2 + R2 + S2 + T2 + U2 + V2 + W2 + X2 + Y2 + Z2 + 4 Subscript positioning Ai + Bi + Ci + Di + Ei + Fi + Gi + Hi + Ii + Ji + Ki + Li + Mi + Ni + Oi + Pi + Qi + Ri + Si + Ti + Ui + Vi + Wi + Xi + Yi + Zi + ai + bi + ci + di + ei + f i + gi + hi + ii + ji + k i + li + mi + n i + o i + p i + q i + r i + s i + t i + u i + v i + wi + x i + y i + z i + Ai + Bi + Γi + ∆ i + Ei + Zi + Hi + Θi + Ii + Ki + Λi + Mi + Ni + Ξi + Oi + Πi + Pi + Σi + Ti + Υi + Φi + Xi + Ψi + Ωi + αi + β i + γi + δi + ei + ζ i + ηi + θi + ιi + κi + λi + µi + νi + ξ i + oi + πi + ρi + σi + τi + υi + φi + χi + ψi + ωi + ε i + ϑi + v i + $ i + ς i + ϕ i + Ai + Bi + Ci + Di + Ei + Fi + Gi + Hi + Ii + Ji + Ki + Li + Mi + Ni + Oi + Pi + Qi + Ri + Si + Ti + Ui + Vi + Wi + Xi + Yi + Zi + ai + bi + ci + di + ei + fi + gi + hi + ii + ji + ki + li + mi + ni + oi + pi + qi + ri + si + ti + ui + vi + wi + xi + yi + zi + Ai + Bi + Γi + ∆i + Ei + Zi + Hi + Θi + Ii + Ki + Λi + Mi + Ni + Ξi + Oi + Πi + Pi + Σi + Ti + Υi + Φi + Xi + Ψi + Ωi + Ai + Bi + Ci + Di + Ei + Fi + Gi + Hi + Ii + Ji + Ki + Li + Mi + Ni + Oi + Pi + Qi + Ri + Si + Ti + Ui + Vi + Wi + Xi + Yi + Zi + ai + bi + ci + di + ei + f i + gi + hi + ii + ji + ki + li + mi + ni + oi + pi + qi + ri + si + ti + ui + vi + wi + xi + yi + zi + Ai + Bi + Γi + ∆ i + Ei + Zi + Hi + Θi + Ii + Ki + Λ i + Mi + Ni + Ξ i + Oi + Πi + Pi + Σ i + Ti + Υi + Φi + Xi + Ψi + Ωi + αi + β i + γi + δi + ei + ζ i + ηi + θi + ιi + κi + λi + µi + νi + ξ i + oi + πi + ρi + σi + τi + υi + φi + χi + ψi + ωi + ε i + ϑ i + vi + $ i + ς i + ϕ i + Ai + Bi + Ci + Di + Ei + Fi + Gi + Hi + Ii + Ji + Ki + Li + Mi + Ni + Oi + Pi + Qi + Ri + Si + Ti + Ui + Vi + Wi + Xi + Yi + Zi + ai + bi + ci + di + ei + fi + gi + hi + ii + ji + ki + li + mi + ni + oi + pi + qi + ri + si + ti + ui + vi + wi + xi + yi + zi + Ai + Bi + Γi + ∆i + Ei + Zi + Hi + Θi + Ii + Ki + Λi + Mi + Ni + Ξi + Oi + Πi + Pi + Σi + Ti + Υi + Φi + Xi + Ψi + Ωi + 1i + Ai + Bi + Ci + Di + Ei + Fi + Gi + Hi + Ii + Ji + Ki + Li + Mi + Ni + Oi + Pi + Qi + Ri + Si + Ti + Ui + Vi + Wi + Xi + Yi + Zi + 5 Accent positioning  + B̂ + Ĉ + D̂ + Ê + F̂ + Ĝ + Ĥ + Î + Ĵ + K̂ + L̂ + M̂+ N̂ + Ô + P̂ + Q̂ + R̂ + Ŝ + T̂ + Û + V̂ + Ŵ + X̂ + Ŷ + Ẑ+ â + b̂ + ĉ + dˆ + ê + fˆ + ĝ + ĥ + î + ĵ + k̂ + lˆ + m̂+ n̂ + ô + p̂ + q̂ + r̂ + ŝ + t̂ + û + v̂ + ŵ + x̂ + ŷ + ẑ+  + B̂ + Γ̂ + ∆ˆ + Ê + Ẑ + Ĥ + Θ̂ + Î + K̂ + Λ̂ + M̂+ N̂ + Ξ̂ + Ô + Π̂ + P̂ + Σ̂ + T̂ + Υ̂ + Φ̂ + X̂ + Ψ̂ + Ω̂+ α̂ + β̂ + γ̂ + δ̂ + ê + ζ̂ + η̂ + θ̂ + ι̂ + κ̂ + λ̂ + µ̂+ ν̂ + ξ̂ + ô + π̂ + ρ̂ + σ̂ + τ̂ + υ̂ + φ̂ + χ̂ + ψ̂ + ω̂+ ε̂ + ϑ̂ + v̂ + $̂ + ς̂ + ϕ̂+  + B̂ + Ĉ + D̂ + Ê + F̂ + Ĝ + Ĥ + Î + Ĵ + K̂ + L̂ + M̂+ N̂ + Ô + P̂ + Q̂ + R̂ + Ŝ + T̂ + Û + V̂ + Ŵ + X̂ + Ŷ + Ẑ+ â + b̂ + ĉ + d̂ + ê + f̂ + ĝ + ĥ + î + ĵ + k̂ + l̂ + m̂+ n̂ + ô + p̂ + q̂ + r̂ + ŝ + t̂ + û + v̂ + ŵ + x̂ + ŷ + ẑ+ ˆ + Ê + Ẑ + Ĥ + Θ̂ + Î + K̂ + Λ̂ + M̂+  + B̂ + Γ̂ + ∆ N̂ + Ξ̂ + Ô + Π̂ + P̂ + Σ̂ + T̂ + Υ̂ + Φ̂ + X̂ + Ψ̂ + Ω̂+  + B̂ + Ĉ + D̂ + Ê + F̂ + Ĝ + Ĥ + Î + Ĵ + K̂ + L̂ + M̂+ N̂ + Ô + P̂ + Q̂ + R̂ + Ŝ + T̂ + Û + V̂ + Ŵ + X̂ + Ŷ + Ẑ+ â + b̂ + ĉ + dˆ + ê + fˆ + ĝ + ĥ + î + jˆ + k̂ + l̂ + m̂+ n̂ + ô + p̂ + q̂ + r̂ + ŝ + t̂ + û + v̂ + ŵ + x̂ + ŷ + ẑ+  + B̂ + Γ̂ + ∆ˆ + Ê + Ẑ + Ĥ + Θ̂ + Î + K̂ + Λ̂ + M̂+ N̂ + Ξ̂ + Ô + Π̂ + P̂ + Σ̂ + T̂ + Υ̂ + Φ̂ + X̂ + Ψ̂ + Ω̂+ α̂ + β̂ + γ̂ + δ̂ + ê + ζ̂ + η̂ + θ̂ + ι̂ + κ̂ + λ̂ + µ̂+ ν̂ + ξ̂ + ô + π̂ + ρ̂ + σ̂ + τ̂ + υ̂ + φ̂ + χ̂ + ψ̂ + ω̂+ ε̂ + ϑ̂ + v̂ + $̂ + ς̂ + ϕ̂+  + B̂ + Ĉ + D̂ + Ê + F̂ + Ĝ + Ĥ + Î + Ĵ + K̂ + L̂ + M̂+ N̂ + Ô + P̂ + Q̂ + R̂ + Ŝ + T̂ + Û + V̂ + Ŵ + X̂ + Ŷ + Ẑ+ â + b̂ + ĉ + d̂ + ê + f̂ + ĝ + ĥ + î + ĵ + k̂ + l̂ + m̂+ n̂ + ô + p̂ + q̂ + r̂ + ŝ + t̂ + û + v̂ + ŵ + x̂ + ŷ + ẑ+ ˆ + Ê + Ẑ + Ĥ + Θ̂ + Î + K̂ + Λ̂ + M̂+  + B̂ + Γ̂ + ∆ N̂ + Ξ̂ + Ô + Π̂ + P̂ + Σ̂ + T̂ + Υ̂ + Φ̂ + X̂ + Ψ̂ + Ω̂+ 1̂ +  + B̂ + Ĉ + D̂ + Ê + F̂ + Ĝ + Ĥ+ Î + Ĵ + K̂ + L̂ + M̂ + N̂ + Ô + P̂ + Q̂+ R̂ + Ŝ + T̂ + Û + V̂ + Ŵ + X̂ + Ŷ + Ẑ+ 6 Differentials dA + dB + dC + dD + dE + dF + dG + dH + dI + dJ + dK + dL + dM+ dN + dO + dP + dQ + dR + dS + dT + dU + dV + dW + dX + dY + dZ+ da + db + dc + dd + de + d f + dg + dh + di + dj + dk + dl + dm+ dn + do + dp + dq + dr + ds + dt + du + dv + dw + dx + dy + dz+ dA + dB + dΓ + d∆ + dE + dZ + dH + dΘ + dI + dK + dΛ + dM+ dN + dΞ + dO + dΠ + dP + dΣ + dT + dΥ + dΦ + dX + dΨ + dΩ+ dα + dβ + dγ + dδ + de + dζ + dη + dθ + dι + dκ + dλ + dµ+ dν + dξ + do + dπ + dρ + dσ + dτ + dυ + dφ + dχ + dψ + dω+ dε + dϑ + dv + d$ + dς + dϕ+ dA + dB + dΓ + d∆ + dE + dZ + dH + dΘ + dI + dK + dΛ + dM+ dN + dΞ + dO + dΠ + dP + dΣ + dT + dΥ + dΦ + dX + dΨ + dΩ+ dA + dB + dC + dD + dE + dF + dG + dH + dI + dJ + dK + dL + dM+ dN + dO + dP + dQ + dR + dS + dT + dU + dV + dW + dX + dY + dZ+ da + db + dc + dd + de + d f + dg + dh + di + dj + dk + dl + dm+ dn + do + dp + dq + dr + ds + dt + du + dv + dw + dx + dy + dz+ dA + dB + dΓ + d∆ + dE + dZ + dH + dΘ + dI + dK + dΛ + dM+ dN + dΞ + dO + dΠ + dP + dΣ + dT + dΥ + dΦ + dX + dΨ + dΩ+ dα + dβ + dγ + dδ + de + dζ + dη + dθ + dι + dκ + dλ + dµ+ dν + dξ + do + dπ + dρ + dσ + dτ + dυ + dφ + dχ + dψ + dω+ dε + dϑ + dv + d$ + dς + dϕ+ dA + dB + dΓ + d∆ + dE + dZ + dH + dΘ + dI + dK + dΛ + dM+ dN + dΞ + dO + dΠ + dP + dΣ + dT + dΥ + dΦ + dX + dΨ + dΩ+ ∂A + ∂B + ∂C + ∂D + ∂E + ∂F + ∂G + ∂H + ∂I + ∂J + ∂K + ∂L + ∂M+ ∂N + ∂O + ∂P + ∂Q + ∂R + ∂S + ∂T + ∂U + ∂V + ∂W + ∂X + ∂Y + ∂Z+ ∂a + ∂b + ∂c + ∂d + ∂e + ∂ f + ∂g + ∂h + ∂i + ∂j + ∂k + ∂l + ∂m+ ∂n + ∂o + ∂p + ∂q + ∂r + ∂s + ∂t + ∂u + ∂v + ∂w + ∂x + ∂y + ∂z+ ∂A + ∂B + ∂Γ + ∂∆ + ∂E + ∂Z + ∂H + ∂Θ + ∂I + ∂K + ∂Λ + ∂M+ ∂N + ∂Ξ + ∂O + ∂Π + ∂P + ∂Σ + ∂T + ∂Υ + ∂Φ + ∂X + ∂Ψ + ∂Ω+ ∂α + ∂β + ∂γ + ∂δ + ∂e + ∂ζ + ∂η + ∂θ + ∂ι + ∂κ + ∂λ + ∂µ+ ∂ν + ∂ξ + ∂o + ∂π + ∂ρ + ∂σ + ∂τ + ∂υ + ∂φ + ∂χ + ∂ψ + ∂ω+ ∂ε + ∂ϑ + ∂v + ∂$ + ∂ς + ∂ϕ+ ∂A + ∂B + ∂Γ + ∂∆ + ∂E + ∂Z + ∂H + ∂Θ + ∂I + ∂K + ∂Λ + ∂M+ ∂N + ∂Ξ + ∂O + ∂Π + ∂P + ∂Σ + ∂T + ∂Υ + ∂Φ + ∂X + ∂Ψ + ∂Ω+ 7 Slash kerning 1/A + 1/B + 1/C + 1/D + 1/E + 1/F + 1/G + 1/H + 1/I + 1/J + 1/K + 1/L + 1/M+ 1/N + 1/O + 1/P + 1/Q + 1/R + 1/S + 1/T + 1/U + 1/V + 1/W + 1/X + 1/Y + 1/Z+ 1/a + 1/b + 1/c + 1/d + 1/e + 1/ f + 1/g + 1/h + 1/i + 1/j + 1/k + 1/l + 1/m+ 1/n + 1/o + 1/p + 1/q + 1/r + 1/s + 1/t + 1/u + 1/v + 1/w + 1/x + 1/y + 1/z+ 1/A + 1/B + 1/Γ + 1/∆ + 1/E + 1/Z + 1/H + 1/Θ + 1/I + 1/K + 1/Λ + 1/M+ 1/N + 1/Ξ + 1/O + 1/Π + 1/P + 1/Σ + 1/T + 1/Υ + 1/Φ + 1/X + 1/Ψ + 1/Ω+ 1/α + 1/β + 1/γ + 1/δ + 1/e + 1/ζ + 1/η + 1/θ + 1/ι + 1/κ + 1/λ + 1/µ+ 1/ν + 1/ξ + 1/o + 1/π + 1/ρ + 1/σ + 1/τ + 1/υ + 1/φ + 1/χ + 1/ψ + 1/ω+ 1/ε + 1/ϑ + 1/v + 1/$ + 1/ς + 1/ϕ+ A/2 + B/2 + C/2 + D/2 + E/2 + F/2 + G/2 + H/2 + I/2 + J/2 + K/2 + L/2 + M/2+ N/2 + O/2 + P/2 + Q/2 + R/2 + S/2 + T/2 + U/2 + V/2 + W/2 + X/2 + Y/2 + Z/2+ a/2 + b/2 + c/2 + d/2 + e/2 + f /2 + g/2 + h/2 + i/2 + j/2 + k/2 + l/2 + m/2+ n/2 + o/2 + p/2 + q/2 + r/2 + s/2 + t/2 + u/2 + v/2 + w/2 + x/2 + y/2 + z/2+ A/2 + B/2 + Γ/2 + ∆/2 + E/2 + Z/2 + H/2 + Θ/2 + I/2 + K/2 + Λ/2 + M/2+ N/2 + Ξ/2 + O/2 + Π/2 + P/2 + Σ/2 + T/2 + Υ/2 + Φ/2 + X/2 + Ψ/2 + Ω/2+ α/2 + β/2 + γ/2 + δ/2 + e/2 + ζ/2 + η/2 + θ/2 + ι/2 + κ/2 + λ/2 + µ/2+ ν/2 + ξ/2 + o/2 + π/2 + ρ/2 + σ/2 + τ/2 + υ/2 + φ/2 + χ/2 + ψ/2 + ω/2+ ε/2 + ϑ/2 + v/2 + $/2 + ς/2 + ϕ/2+ Big operators n ∑x n i=1 n O x n ∏x n äx n i=1 n i=1 n M Z n x x n i=1 n I i=1 i=1 n K n x i=1 n n ^ n xn i=1 x i=1 n n _ i=1 x n n ] x n i=1 n [ i=1 x n n \ x n G n i=1 i=1 Radicals p q x2 + y2 vv uuv uuusr uuu qp utt t x+y x+y q xi2 + y2j r cos x 2 8 s sin x 2 xn Over- and underbraces z}|{ z }| { z 2 }| {2 x x+y x +y z }| { xi2 + y2j x |{z} x+y | {z } xi2 + y2j | {z } xi + y j | {z } Normal and wide accents ẋ ẍ ~x x̄ x xx x̃ xe xfx xg xx x̂ xb xcx xd xx Long arrows ←−→ ↔ ←− −→ ←→ ⇐=⇒ ⇔ ⇐= =⇒ ⇐⇒ Left and right delimiters −( f ) − −[ f ] − −b f c − −d f e − −h f i − −{ f }− −(f) − −[f] − −bfc − −dfe − −hfi − −{f}− −)f( − −]f[ − − f − −\f\ − − f\ − −\f − Big-g-g delimiters $ % j k − b−c − & − l d−e − − ' m − − D h−i E ( n (−) {−} ! − ) o − − − − " h # i − [−] − **** ++++ − xx xx xx x ↑−↓y − − y y yy yy − − − ~~ ww ww~~ ww ww wwww~~ w w wwww wwwwww~ ww w wwww wwwww⇑−⇓w −w − w wwww ww w w w ww ww w w ww 9 3. Layout tables for the ‘raw’ Pazo fonts “0 “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx Π “1 “2 Θ “3 Σ “4 ∆ € “5 Υ ∞ ∝ ä ∏ ∑ “6 “7 Φ Γ Ω “8 Ξ “9 “A “B “C “D “E ? Λ Ψ “F ∅ Table 1. Font layout for Pazo Math “0 “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx Π “1 “2 Θ “3 Σ € “4 ∆ “5 Υ ∞ ∝ “6 “7 Φ Γ Ω “8 Ξ “9 “A Ψ ∅ Table 2. Font layout for Pazo Math Bold 10 “B “C Λ “D “E “F “0 “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “1 “2 “3 “4 ε $ “5 “6 “7 “8 “9 Υ e υ Φ ς φ v Γ Ω γ ω Ξ η ξ Ψ ι ψ ∆ Π π Θ α θ β ρ Σ χ σ δ τ “A “B ϑ ϕ ζ “C “D “E “F Λ κ λ µ ν “B “C “D “E µ ν € ∂ à Table 3. Font layout for Pazo Math Italic “0 “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “1 “2 “3 “4 ε $ “5 “6 “7 Υ e υ Φ ς φ v Γ Ω γ ω ∆ Π π Θ α θ β ρ Σ χ σ δ τ “8 “9 “A ϑ Ξ η ξ Ψ ι ψ ϕ ζ Λ κ € ∂ à Table 4. Font layout for Pazo Math Bold Italic 11 λ “F “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “0 “1 “2 “3 “4 “5 “6 “7 “8 “9 “A “B “C “D “E “F B R C S D T E U F V G W H X I Y J Z K L M N O P 1 A Q Table 5. Font layout for Pazo Math Blackboard Bold 12 4. Layout tables for the virtual math fonts “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “0 Γ ı 0 @ P ‘ p “1 ∆ ! 1 A Q a q “2 Θ ` ” 2 B R b r “3 Λ ´ # 3 C S c s “4 Ξ ˇ $ 4 D T d t “5 Π ˘ % 5 E U e u “6 Σ ¯ & 6 F V f v “7 Υ ˚ ’ 7 G W g w “8 Φ ¸ ( 8 H X h x “9 Ψ ß ) 9 I Y i y “A Ω æ * : J Z j z Ł “B ff œ + ; K [ k – “C fi ø , ¡ L “ l — “D fl Æ = M ] m ˝ “E ffi Œ . ¿ N ˆ n ˜ “F ffl Ø / ? O ˙ o ¨ “C fi ø , ¡ L “ l — “D fl Æ = M ] m ˝ “E ffi Œ . ¿ N ˆ n ˜ “F ffl Ø / ? O ˙ o ¨ ł Table 6. Font layout for OT1/zplm/m/n “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “0 Γ ı 0 @ P ‘ p “1 ∆ ! 1 A Q a q “2 Θ ` ” 2 B R b r “3 Λ ´ # 3 C S c s “4 Ξ ˇ $ 4 D T d t “5 Π ˘ % 5 E U e u “6 Σ ¯ & 6 F V f v “7 Υ ˚ ’ 7 G W g w “8 Φ ¸ ( 8 H X h x “9 Ψ ß ) 9 I Y i y “A Ω æ * : J Z j z Ł ł Table 7. Font layout for OT1/zplm/b/n 13 “B ff œ + ; K [ k – “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “0 Γ ζ ψ 0 ∂ P ` p “1 ∆ η ω 1 A Q a q “2 Θ θ ε 2 B R b r “3 Λ ι ϑ 3 C S c s “4 Ξ κ v 4 D T d t “5 Π λ $ 5 E U e u “6 Σ µ ς 6 F V f v “7 Υ ν ϕ 7 G W g w “8 Φ ξ ( 8 H X h x “9 Ψ π ) 9 I Y i y “A Ω ρ * . J Z j z “B α σ + , K [ k ı “C β τ , < L \ l “D γ υ / M ] m ℘ “E δ φ . > N ^ n ~ “F e χ / ? O _ o à “C β τ , < L \ l “D γ υ / M ] m ℘ “E δ φ . > N ^ n ~ “F e χ / ? O _ o à Table 8. Font layout for OML/zplm/m/it “0x “1x “2x “3x “4x “5x “6x “7x “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx “0 Γ ζ ψ 0 ∂ P ` p “1 ∆ η ω 1 A Q a q “2 Θ θ ε 2 B R b r “3 Λ ι ϑ 3 C S c s “4 Ξ κ v 4 D T d t “5 Π λ $ 5 E U e u “6 Σ µ ς 6 F V f v “7 Υ ν ϕ 7 G W g w “8 Φ ξ ( 8 H X h x “9 Ψ π ) 9 I Y i y “A Ω ρ * . J Z j z “B α σ + , K [ k ı Table 9. Font layout for OML/zplm/b/it 14 “0x “1x “2x “3x “4x “5x “6x “7x “0 − ← 0 ℵ P ` √ “1 · ≡ → ∞ A Q a q “2 × ⊆ ↑ ∈ B R b ∇ “3 ∗ ⊇ ↓ 3 C S c ∫ “4 ÷ ≤ ↔ 4 D T d t “5 ≥ % 5 E U e u “6 ± & 6 F V { v “7 ∓ ' 7 G W } w “8 ⊕ ∼ ⇐ ∀ H X h § “9 ≈ ⇒ ∃ I Y i † “A ⊗ ⊂ ⇑ ¬ J Z | ‡ “B “C “D ⊃ ⇓ ∅ K ∪ k ¶ ⇔ < L ∩ l ♣ = M ] m ♦ “E ◦ ≺ . > N ∧ \ ♥ “F • ∝ ⊥ O ∨ o ♠ “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx Table 10. Font layout for OMS/zplm/m/n “0x “1x “2x “3x “4x “5x “6x “7x “0 − ← 0 ℵ P ` √ “1 · ≡ → ∞ A Q a q “2 × ⊆ ↑ ∈ B R b ∇ “3 ∗ ⊇ ↓ 3 C S c ∫ “4 ÷ ≤ ↔ 4 D T d t “5 ≥ % 5 E U e u “6 ± & 6 F V { v “7 ∓ ' 7 G W } w “8 ⊕ ∼ ⇐ ∀ H X h § “9 ≈ ⇒ ∃ I Y i † “A ⊗ ⊂ ⇑ ¬ J Z | ‡ “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx Table 11. Font layout for OMS/zplm/b/n 15 “B “C “D ⊃ ⇓ ∅ K ∪ k ¶ ⇔ < L ∩ l ♣ = M ] m ♦ “E ◦ ≺ . > N ∧ \ ♥ “F • ∝ ⊥ O ∨ o ♠ “0 “1 “2 “3 “4 “5 “6 “7 “8 “9 “A “B “C “D “E “F ! " # $ % & ' ( ) * + , - . / “0x “1x “2x “3x “4x D E F G H I J K L M N O “5x ∑ ∏ R S T U V W Z [ \ ] ^ _ “6x ä ä b c d e f g h i j k l m n o “7x p q r s t u v w x y z { | } ~ ∑ ∏ “8x “9x “Ax “Bx “Cx “Dx “Ex “Fx Table 12. Font layout for OMX/zplm/m/n 16