Biomimetic silica nanospheres: a versatile nanotool for protein immobilization. Erienne Jackson1, Mariana Ferrari1, Valeria Grazú2, Jesús Martinez de la Fuente3, Lorena Betancor1 . 1 Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay; 2 Universidad de Zaragoza, Zaragoza, Spain; 3Institute of Materials Science, Spanish Research Council, Aragón, Spain, Institute of Nano Biomedicine and Engineering. Biotechnology Department Lorena Betancor, PhD [email protected] Diatoms inspirate nanotechnology + silicic acid Kroger et al., Science 1999 Biomimetic silica: support for protein immobilization Silaffin peptide or poly amine molecule + Solution of Silicic acid + enzyme Biomimetic silica: support for protein immobilization Enzyme Butyrylcholinesterase Organophosphate hydrolase Organophosphate acetic anhydrolase Application Biosensor for nerve agent detection Biosensor for nerve agent detection or decontamination system Polyamine molecule Immobilization efficiency (%) R5 90 R5 25 R5 75 Hydroxylaminobenzene mutase Biocatalysis of amino-substituted aromatics R5 80 Soybean peroxidase Biocatalysis R5 60 Nitrobenzene nitroreductase Activation of prodrugs PEI / Lys 48 / 21 Glucose oxidase Biosensor, Biocatalysis R5 / PEI / Lys 51/ 71/ 24 b-galactosidase Biocatalysis R5 / PEI / Lys 45 / 42 / 16 Catalase Biosensors and biosynthesis R5 75 Betancor and Luckarift, (2008) Trends Biotechnol. 26, (10), 566 Protein entrapment in biosilica nanoparticles. Rapid. Immobilization occurs within seconds. Mild. Formation of the particles occurs at room temperature and pH 8. Green. No requirement of organic solvents or high temperatures. Nanosized. 300 to 500 nm, Lower diffusion limitations and higher volumetric activities. Robust. Physical properties suitable for flow-through applications. Stabilizing. Numerous enzymes have been stabilized by entrapment in this support. Polymorphous. Shapes can be tailored by varying the conditions of silica deposition. Betancor et al. (2006) Chem. Comm. (34), 3640. Betancor and Luckarift, (2008) Trends Biotechnol. 26, (10), 566 Betancor et al. (2006) Biomacromolecules., 7(9), 2631. New perspectives in biomimetic silica nanoparticles (a) Foto 15 (b) Tetramethyl orthosilicate Polyethylenimine (PEI) + Betancor and Luckarift, (2008) Trends Biotechnol. 26, (10), 566 Buffer phosphate 0.1M, pH 8 + Na2HPO4 = New perspectives in biomimetic silica nanoparticles Protein templated nanoparticles Foto 15 (b) DLS Z potential Sample Size (nm) Silica-PEI Foto 15 Silica-PEI-BSA Tetramethyl orthosilicate 798.7 ± 100.8 0.639 ± 0.2 38 ± 0.8 374.4 ± 36.4 Foto 12 Polyethylenimine (PEI) + (mV) PDI* 0.409 ± 0.1 32 ± 0.7 Buffer phosphate 0.1M, pH 8 + Na2HPO4 + = protein Protein entrapment Foto 12 Jackson et. Protein templated biomimetic silica nanoparticles. (2015) Langmuir. Submitted Use of external particle surface for protein immobilization: KDa 200 116 97 66 1 2 3 4 5 6 7 8 9 10 45 29 Protein concentration in the supernatant (mg/mL) Adsorption of E coli protein extract. 2,5 2,0 1,5 1,0 0,5 0,0 0 50 100 150 200 Time (min) KDa 116 97 66 45 29 1 2 3 4 5 6 7 Protein concentration in the supernatant (mg/mL) Desorption of E coli protein extract. 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 0 200 400 600 800 NaCl (mM) 1000 1200 Immobilization of Laccase from Trametes versicolor Betancor, L., et al. (2013). ChemCatChem, 5(1), 46. Adsorption of Laccase from Trametes versicolor 0,1 16 Adsorption 14 0,08 12 0,07 Activiy (UI) Activity (UI) Desorption 0,09 10 8 6 0,06 0,05 0,04 0,03 4 0,02 2 0,01 0 0 0 10 20 30 40 50 60 70 0 200 t (min) 400 600 [NaCl] (mM) Adsorption Desorption 13.4 ± 1.5 mg 15.3 ± 0.5 mg Loading capacity using Laccase Tv. mg protein/g particles Silica PEI 42.8 ± 7.4 Silica PEI-BSA 57.3 ± 4.5 800 1000 1200 New perspectives in biomimetic silica nanoparticles Use of external particle surface for protein immobilization through covalent interaction Tetramethyl orthosilicate Polyethylenimine (PEI) + BSA + Silica PEI+BSA Glutaraldehyde + Enzyme + NH2 Covalent linkage Immobilization of lipases on biomimetic silica nanoparticles. Lipase sources Rhizomucor miehei lipase(RML) Thermomyces lanuginosus lipase (TLL) Bacillus thermocatenolatus lipase(BTL2 Advantages of nanosized supports in biocatlysis: Large functional surface area Increased enzyme loading Reduction in diffusion limitations Enhanced particle mobility Lipase immobilization in/on biomimetic silica nanoparticles Enzyme Strategy Immobilization (%) Yield (%) Physical entrapment 90,0 0, 8 24,0 0,6 Covalent linkage 87,0 0, 4 84,0 0,7 Physical entrapment 40,0 0,9 30,0 0,7 Covalent linkage 74,0 0,9 100 1 Physical entrapment 91,0 0,1 47,00 0,09 Covalent linkage 95,0 0,1 47,00 0,08 RML TLL BTL2 Fig. 1 TEM image of silica nanoparticles Thermal stability (60°C) of lipase preparations Enzyme Strategy Half life time (min) RML soluble enzyme Physical entrapment Covalent linkage 2,5 ± 0,2 70 ± 1 60 ± 1 TLL soluble enzyme Physical entrapment Covalent linkage 140 ± 1 160 ± 1 360 ± 5 BTL2 soluble enzyme Physical entrapment Covalent linkage 25 ± 1 125 ± 5 63 ± 1 100 90 80 70 60 50 40 30 20 10 0 RML Covalent linkage 100 Residual activity (%) Residual activity (%) RML Physical entrapment RML Si RML Sol 80 RML SiGlu 60 RML Sol 40 20 0 0 20 40 60 80 T(min) 100 120 0 50 100 150 200 250 T (min) 300 Stability of RML immobilized against solvents. Stability in 50% ethanol 120 120 100 100 Residual activity (%) Residual activity (%) Stability in 50% ethanol 80 60 40 80 60 40 20 20 0 0 0h 1h 0h 72 h Stability in 100% tert-butanol 1h 72 h 120 Residual activity (%) 100 80 60 40 20 0 0h 1h 96 h Stabilities were performed at 25°C incubating 13 IU/mL Ascorbic palmitate synthesis Sin título 0,024 0,022 0,020 Ascorbic acid/Palmitic Acid 0,018 0,016 0,014 AU 0,012 0,010 0,008 H2O HO Lipase 0,006 0,004 0,002 0,000 2,00 0,190 4,00 Sample Name: sustrato de RML; UYT 6,00 Vial: 1; 8,00 Minutes Injection: 4; 10,00 Channel: 486 ; 12,00 Sin14,00 título Ascorbic acid Palmitic acid Ascorbic palmitate Date Acquired: 9/24/2014 12:32:18 PM 0,180 0,170 Reported by User: System Report 0,160Method: Sin título Report Method ID: 101 101 Project Name: Defaults Date Printed: 10/14/2014 4:32:58 PM America/Montevideo 0,150 Ascorbic palmitate 0,140 0,130 0,120 0,110 AU 0,100 0,090 0,080 0,070 0,060 0,050 0,040 0,030 0,020 0,010 0,000 -0,010 2,00 0,013 4,00 6,00 Sample Name: PA 5 mM reaccion 6-10-2014; 2:54:41 PM UYT 8,00 Minutes Vial: 1; 10,00 Injection: 4; 12,00 Channel: 486 ; 0,012 Sin título 14,00 Date Acquired: 10/7/2014 Reaction after 1 hour at 37°C 6 % conversion Reported by User: System Report Method: Sin título 0,011Method ID: 101 Report 101 Project Name: Defaults Date Printed: 10/14/2014 4:44:43 PM America/Montevideo 0,010 0,009 0,008 AU 0,007 0,006 0,005 0,004 0,003 0,002 0,001 0,000 -0,001 2,00 Sample Name: RML 1h ; Reported by User: System Report Method: Sin título Report Method ID: 101 101 4,00 Vial: 1; 6,00 Injection: 1; 8,00 Minutes Channel: 486 ; 10,00 12,00 14,00 After 24 hours of reaction course, the immobilized preserved 80% of activity measured with pNPB Date Acquired: 9/24/2014 2:34:51 PM UYT RP-HPLC analysis: Luna C18 column, 250 x 4.56, 1 mL/min, Methanol: H2O: Acetic acid, 95:5:0,5 (v:v:v), UV detection at 266 nm Project Name: Defaults Date Printed: 10/14/2014 4:38:12 PM America/Montevideo GFP immobilization in biomimetic silica nanoparticles GFP immobilization •100% immobilization •Minimal decrease in fluorescence after immobilization pH stability of entrapped GFP Conclusions: .An inert protein template (BSA) enabled the rapid synthesis of positively charged disperse 200-300 nm particles as opposed to the synthesis without template which produced larger and less size homogenous nanoparticles. The particles synthesized in the presence of BSA reversibly and ionically adsorbs a range of proteins. . Glutaraldehyde functionalization of silica nanoparticles provided the possibility of covalently attached proteins on the particle surface. Silica particles provided stability against temperature, pH, organic solvents . In the case of lipasas it also provided operational stability. . ACKNOWLEDGMENTS Protein technology group Collaborators Mariana Ferrari, PhD candidate Dr. Jesús Martinez de la Fuente Erienne Jackson, MSc candidate Dr. Valeria Grazú Josefina Louge, Research assistant