Mecanismos de transmisión de la política monetaria en Venezuela

Anuncio
Colección
Banca Central y Sociedad
BANCO CENTRAL DE VENEZUELA
Mecanismos
de transmisión
de la política
monetaria
en Venezuela
Adriana Arreaza
Norka Ayala
María Amelia Fernández
Serie Documentos de Trabajo
Gerencia de Investigaciones Económicas
Diciembre 2001
34
Resumen
En este trabajo se emplea la técnica de los vectores
autorregresivos estructurales para investigar los
mecanismos de transmisión de la política monetaria en
Venezuela. Se estima igualmente una función de reacción
para el Banco Central. Se emplean datos mensuales entre
1989 y 2000, y como variable de política se utiliza un
agregado monetario. Los resultados de la estimación de
la función de reacción del Banco Central sugieren que
tanto el crédito del Banco Central como M1 exhiben
incrementos permanentes frente a shocks positivos en el
nivel de precios, y respuestas transitorias ante shocks de
origen fiscal. Las fluctuaciones del producto en el muy
corto plazo parecen no producir cambios en la dirección
de la política monetaria. En respuesta a shocks positivos
en las reservas internacionales, la autoridad monetaria
parece responder en forma rezagada con recortes de
liquidez. Al controlar por variables fiscales y cambiarias
que intervienen en la función de reacción del Banco
Central, se logra eliminar el problema de la paradoja
de los precios en los modelos de mecanismos de
transmisión. El modelo del mecanismo de crédito es el
que parece ajustar mejor los datos, lo cual sugiere que
este mecanismo puede estar operando en nuestra
economía.
Abstract
In this paper we use structural VARs to study the
transmission mechanisms of monetary policy in
Venezuela. We also estimate a reaction function for the
Central Bank. We use monthly data from 1989 until
2000. We use monetary aggregates —credit of
the Central Bank and M1— as policy variables. The
estimates of the reaction function suggest that a positive
shock in prices implies a permanent increase in the
policy variables, and that positive shocks on fiscal
variables induce a positive and transitory response of
the monetary aggregates. Positive innovations
on international reserves seem to produce lagged
cuts on liquidity. By controling for fiscal and
international finance variables that are significant in
the reaction function, we are able to eliminate the price
puzzle in the different models of transmission
mechanism we tested. The credit channel model seems
to fit the data adequately, which suggests that this
channel may be operating in our economy.
Mecanismo
de transmisión
de la política
monetaria
en Venezuela
Adriana Arreaza
Norka Ayala
María Amelia Fernández
Índice general
1. INTRODUCCIÓN .................................................................................7
2. LA POLÍTICA MONETARIA EN VENEZUELA ............................................9
3. MECANISMOS DE TRANSMISIÓN DE LA POLÍTICA MONETARIA ...............13
3.1 El mecanismo monetario ......................................................13
3.2 El mecanismo del crédito .....................................................14
3.3 El mecanismo cambiario ......................................................15
4. ANÁLISIS EMPÍRICO ........................................................................18
4.1 Función de reacción del Banco Central................................23
4.2 Mecanismos de transmisión .................................................26
4.2.1 Mecanismo monetario..................................................26
4.2.2 Mecanismo del crédito .................................................27
5. CONCLUSIONES ..............................................................................31
ANEXO ..............................................................................................33
REFERENCIAS .....................................................................................55
1. Introducción
Uno de los objetivos fundamentales del Banco Central de Venezuela es defender el valor interno de la moneda. Para ello se hace
necesario determinar en qué medida y de qué manera las acciones de
política monetaria se filtran al resto de la economía y finalmente a la
dinámica de los precios. Igualmente, resulta relevante analizar cómo
responde la política monetaria ante fluctuaciones en el producto y los
precios, es decir, si la política monetaria sigue algo similar a una regla
de Taylor o si la efectividad de la misma se ve afectada por variables
fiscales y cambiarias, como se espera en el caso venezolano.
En la presente investigación se utilizó la técnica de vectores
autorregresivos (VAR) estructurales debido a que, en nuestro criterio,
permite obtener resultados más confiables que los alcanzados usando
VAR tradicionales. En los VAR tradicionales, generalmente se emplea la descomposición de Choleski para obtener las innovaciones
estructurales a partir de los residuos estimados, para luego calcular
las funciones impulso-respuesta. Ello implica suponer que los errores
estructurales se derivan mediante un proceso recursivo, lo cual puede
incluir supuestos de identificación poco adecuados. Por el contrario,
los VAR estructurales permiten imponer las restricciones que se consideren apropiadas para derivar las innovaciones estructurales a partir
de los residuos estimados. Un antecedente en el caso venezolano lo
constituye el estudio de Guerra, Rodríguez y Sánchez (1998) quienes
utilizan VAR tradicionales y de corrección de error con datos de frecuencia trimestral. Dada nuestra preocupación por los grados de libertad en las estimaciones, se optó por utilizar datos mensuales, siendo que las series del PIB trimestral sólo están disponibles a partir de
principios de los noventa.
El documento se estructura de la siguiente manera: en la segunda
sección se presenta un análisis de la conducción de la política mone7
taria en Venezuela con especial énfasis en la década de los noventa.
En la tercera sección se exponen brevemente los principales mecanismos de transmisión de la política monetaria. En la cuarta sección se
encuentran los resultados econométricos de la estimación de la función de reacción del Banco Central y de los mecanismos de transmisión. Por último, se exponen las conclusiones del estudio.
8
2. La política monetaria en Venezuela
Desde sus inicios, el objeto del Banco Central de Venezuela como
instituto encargado de la política monetaria ha sido crear y mantener
las condiciones monetarias, crediticias y cambiarias favorables a la
estabilidad de la moneda, al equilibrio económico y al desarrollo ordenado de la economía, así como asegurar los pagos internacionales1.
Tal y como se muestra en el Cuadro N° 1 en el Anexo, los instrumentos de política comúnmente utilizados para lograr los objetivos
trazados han sido el encaje legal, la asistencia financiera a través de
los anticipos y redescuentos y las operaciones de mercado abierto2.
Sin embargo, a partir de 1989 con el programa de ajuste macroeconómico, implementado a raíz de un acuerdo con el Fondo Monetario Internacional, los mecanismos indirectos de control monetario comenzaron a tener mayor importancia y efectividad, ante la
necesidad de una actuación más activa por parte del Banco Central de
Venezuela que le permitiera propiciar el equilibrio en los mercados
monetario y cambiario. Anteriormente (con excepción de septiembre
de 1981 y febrero de 1984), la efectividad de estos mecanismos indirectos fue solapada al actuar conjuntamente con mecanismos directos
como el manejo discrecional de las tasas de interés y establecimiento
de requerimientos mínimos de cartera crediticia con tasas de interés
preferenciales para diversas actividades (sector construcción y
agropecuario).
1 La Ley del Banco Central de Venezuela de 2000, establece más explícitamente que el objeto es
lograr la estabilidad de precios y preservar el valor de la moneda.
2 Si bien han sido los instrumentos más comunes, en ocasiones se han utilizado otros instrumentos específicos, con el fin de mantener el mercado en equilibrio. Por ejemplo, la asistencia
financiera indirecta de 1985 con la creación de Fogade y Fococam (luego sustituida por Ficam).
9
En 1989 las operaciones de mercado abierto pasaron a ser el instrumento de política preponderante, con la particularidad de emisión de
títulos propios del Banco Central de Venezuela. Desde entonces, hasta
octubre de 19993, la política monetaria ha tenido un carácter contractivo,
salvo en 1994 a raíz de la crisis financiera, y se ha basado principalmente en la utilización de mecanismos indirectos de control monetario4.
Una limitación al impacto y efectividad de la política monetaria
en Venezuela a lo largo de la década de los noventa ha sido la presencia de regímenes cambiarios con distintos grados de predeterminación.
En este sentido, el compromiso de cumplir con el régimen cambiario,
particularmente a partir de la implementación en 1996 del régimen de
bandas, ha propiciado una participación más activa del Banco Central
de Venezuela dentro del mercado cambiario. De hecho, en los últimos
años la venta de divisas ha sido utilizada como (o ha servido de) instrumento de control monetario, hasta ser el instrumento de ajuste más
importante en el último semestre del 2000.
En cuanto a la forma de conducir la política monetaria, la Ley del
Banco Central de Venezuela establece que durante el primer mes de
cada semestre, el Directorio del Banco aprobará las directrices de la
política monetaria que contenga las metas y estrategias que orientarán su acción. Para propósitos operativos, el Banco diseña un programa monetario que consiste en la determinación, fijación y seguimiento de una meta monetaria intermedia, consistente con los objetivos
finales del programa económico.
En 1984 se elaboró el primer modelo de programación monetaria,
con el fin de controlar la inflación a través de la liquidez monetaria
(M2) como meta intermedia. Sin embargo, su ejecución estuvo limitada
3 En este mes ocurrió la última emisión de los TEM.
4 En ocasiones, el BCV ha hecho uso del manejo discrecional de tasas de interés, como en el
caso de 1998, cuando se elevaron significativamente las tasas de interés anual, que cobra por
la asistencia crediticia a la banca y por el incumplimiento del encaje (Ver Cuadro N° 1 en el
Anexo). Aunque el resultado de repunte general de las tasas de interés en 1998, también estuvo incentivado por las Operaciones de Mercado Abierto.
10
por los controles del tipo de cambio y de tasas de interés impuestos en
ese período. Con el programa de ajuste de 1989 se rediseñó el modelo y
oficialmente comenzó a ejecutarse el programa monetario. Desde entonces, la meta ha dependido del esquema cambiario vigente. A saber,
con tipo de cambio flexible y flotación libre de las tasas de interés, se ha
utilizado el dinero base como meta intermedia. Mientras que bajo un
esquema de tipo de cambio fijo o predeterminado, como el de bandas
de fluctuación, la variable intermedia ha sido el crédito interno neto5.
En el Cuadro N°1 se esquematizan los objetivos finales, metas intermedias y variables instrumentales del programa monetario venezolano,
bajo los distintos escenarios de tasas de interés y de tipo de cambio. Con
relación a los resultados obtenidos, cabe resaltar que hasta 1998 claramente se expresaba en los informes económicos del Banco Central de
Venezuela que la programación monetario-financiera había permitido ajustar los niveles de intervención del Instituto en el mercado monetario y
cambiario, para corregir desvíos ocasionados por la incidencia de la gestión fiscal y los cambios autónomos en la demanda de dinero.
Cuadro N° 1
Programa monetario de Venezuela
Período
Objetivos
finales
1989-92 Inflación
Meta monetaria
intermedia1/
Dinero
base.
1993-99 - Inflación.
- Sostenibilidad
del tipo
de cambio
nominal.
Crédito
interno
neto.
2000
Crédito
interno neto
y dinero
base.
-Inflación.
-Sostenibilidad
del tipo de
cambio nominal
prefijado.
Variable
instrumental
Operaciones de mercado
abierto con emisión de
títulos propios (Bonos
Cero Cupón (BCC)).
Escenario
-Programa económico
bajo el acuerdo del FMI.
- Tipo de cambio flexible.
- Flotación de las tasas de
interés.
Operaciones de mercado
-Desde 1996 la “Agenda
abierto con emisión de
Venezuela”.
títulos propios (en 1995
-Tipo de cambio fijo o
los BCC fueron sustituidos predeterminado. (Control
por los Títulos de
de cambio y desde 1996
Estabilización Monetaria
banda de fluctuación
(TEM)).
cambiaria).
-Flotación de las tasas de
interés.
Venta de divisas.
-Banda de fluctuación
cambiaria.
-Flotación de las tasas
de interés.
Fuente: BCV
1/ Variable final del programa monetario
5 “En situaciones ambiguas en cuanto al rol del tipo de cambio y de las reservas internacionales
dentro de la estrategia de política económica o cuando se inicia un programa de estabilización,
es recomendable hacer un seguimiento a la base monetaria, aunque la variable meta sea el
activo interno neto”, Mirabal (1999).
11
A pesar de los lineamientos de política establecidos por el Directorio del Banco Central de Venezuela y del diseño del programa monetario, en la práctica la ejecución de la política monetaria ha estado
condicionada también a la política fiscal, más específicamente, el carácter expansivo o restrictivo de la política monetaria ha estado
inversamente determinado por la ejecución del gasto fiscal. Como
señala Mirabal (1999), mejoras fiscales asociadas a incrementos en
los precios del petróleo inducen incrementos en el nivel de
monetización que requieren una actuación más restrictiva del BCV.
Asimismo, la diversidad de objetivos que ha pretendido alcanzar la
política monetaria en determinados períodos, junto a circunstancias
como interrupción de los programas de ajustes, la crisis financiera,
controles de cambio, han limitado su eficiencia en el logro de sus
objetivos generales. Por otro lado, con relación a los instrumentos de
política, Mirabal (1999), señala que “la eficacia del instrumento para
lograr los objetivos de política ha estado condicionada, en algunos
casos, por la alta incidencia expansiva del gasto público y en otros
debido a la caída recurrente de la demanda de dinero…”.
Tenemos pues, que la política monetaria en Venezuela en la última década se ha fundamentado en una programación financiera orientada hacia el control de agregados monetarios y condicionada por la
política cambiaria y la política fiscal.
12
3. Mecanismos de transmisión de la política monetaria
Existen diversos modelos para explicar los canales a través de los
cuales los instrumentos de política monetaria pueden afectar las variables objetivo, como pueden ser la inflación, el nivel de activos externos netos o el tipo de cambio6. En esta sección se exponen brevemente los principales mecanismos de transmisión de la política monetaria, a saber, el mecanismo monetario, el canal del crédito, y el
mecanismo cambiario para economías abiertas. Este breve análisis
que presentamos de la evolución y diferencias de los mecanismos más
discutidos en la literatura reciente se basa en Neumann (1995) y
Cecchetti (1995).
3.1El mecanismo monetario
El mecanismo tradicional empleado en los libros de texto para
explicar la transmisión de la política monetaria al resto de la economía es el mecanismo del dinero introducido por Keynes en su Teoría
General. En este mecanismo se agregan todos los activos de la economía en dos categorías: monetarios y no monetarios. Los últimos, recogen tanto activos financieros como bienes de capital, suponiendo
que ambos son sustitutos perfectos. Este supuesto de perfecta sustitución entre bienes de capital y activos financieros es lo que permite
que la política monetaria se transmita a la demanda agregada mediante una tasa de interés única y que la elasticidad de la demanda de dinero
sea el único determinante de la efectividad de la política monetaria. De
este modelo se deriva la clásica interpretación de que una reducción de la
cantidad de dinero aumenta el costo del crédito, reduciendo ello la inversión al eliminarse los proyectos marginalmente menos rentables y
por ende induciendo caídas en la demanda agregada.
6 Ver Taylor (2000) para una comparación entre varios modelos existentes en la literatura.
13
Las restricciones analíticas de esta teoría condujeron a desarrollos posteriores como aquella de los precios relativos o teoría monetaria para explicar los mecanismos de transmisión (Brainard y Tobin,
1963). Según esta explicación, a diferencia de la teoría keynesiana,
los activos financieros y de capital son sustitutos imperfectos. Ello
implica que cambios inesperados en la oferta de dinero alteran todos
los precios relativos, induciendo cambios en la composición del portafolio de los agentes y por consiguiente en sus decisiones de consumo e inversión. Por lo tanto, el impacto de la política monetaria puede
ser entendido a través de la caracterización de cómo cambia la composición de la tenencia de activos. Dado que en estos modelos no se
consideran imperfecciones de mercado, ante cualquier caída de la inversión sólo los proyectos menos productivos dejan de financiarse,
haciendo que la distribución del financiamiento disponible entre sectores sea socialmente eficiente.
3.2 El mecanismo del crédito
La presencia del canal de crédito puede amplificar los efectos del
mecanismo tradicional de la política monetaria. Esta teoría considera
los efectos de la hoja de balance de las empresas y los efectos de los
préstamos a través de intermediarios. La presencia de imperfecciones
en el mercado de crédito hace más complejo el cálculo de la eficiencia
marginal de los proyectos de inversión. En cuanto a la situación del
balance de las empresas, ésta tiene implicaciones sobre la capacidad
de adquirir préstamos, debido a problemas de asimetría de información y de riesgo moral en los mercados. Las políticas de restricción de
liquidez pueden reducir las ventas futuras e incrementar el valor real
del endeudamiento, lo cual deterioraría el valor de las empresas reflejado en los balances. Con esto, las empresas pierden capacidad de
contraer nuevo endeudamiento, dado que se estarían generando incentivos para subestimar el riesgo de los proyectos de inversión potenciales. Como resultado, aumenta la prima de riesgo para nuevos
créditos de las empresas. El efecto de la hoja de balance implica que
la curva de la eficiencia marginal de la inversión depende de la proporción de deuda de la empresa. Por ende, dado un cambio en la tasa
de retorno del dinero, los prestamistas estarán dispuestos a conceder
menos crédito para un proyecto de inversión determinado en tanto
mayor sea el nivel de deuda del inversor potencial. Bajo este mecanis14
mo, la política monetaria tiene un impacto distributivo dado que afecta de manera disímil a los agentes dependiendo de su grado de endeudamiento. Esto explica cómo pequeños cambios en las tasas de interés pueden tener un impacto importante en la inversión.
Otra explicación para el canal del crédito se basa en el supuesto
clave de que existen empresas que sólo pueden financiarse mediante
préstamos bancarios (pequeñas y medianas empresas que no pueden
participar en el mercado de capitales). Otro supuesto importante es
que los activos del portafolio de los agentes se distribuyen entre dinero, préstamos y todos los demás activos. Una reducción de la cantidad
de dinero tiene un efecto contractivo en las reservas de los bancos y
por ende en los depósitos, lo cual puede traducirse en una reducción
del crédito. Esto impide que las empresas que se financian únicamente mediante créditos obtengan préstamos para nuevos proyectos de
inversión, en ausencia de sustitutos cercanos a los créditos. De operar
este mecanismo en la economía, los efectos de la política monetaria
son distributivos desigualmente, pues afectan particularmente a los
prestatarios que dependen exclusivamente del crédito.
3.3 El mecanismo cambiario
En economías abiertas, las acciones de política afectan también el
comportamiento del tipo de cambio, lo cual puede distribuirse al resto
de las variables de la economía. Cabrera y Lagos (2000) esbozan este
mecanismo basándose en un modelo desarrollado en Kamin (1996)
que intenta explicar la apreciación del tipo de cambio real durante
procesos de estabilización basados en anclajes cambiarios. El modelo
se centra en la dinámica del tipo de cambio real en el corto y mediano
plazo, con base en desequilibrios entre la demanda y la oferta de bienes transables y no transables.
Los supuestos básicos del modelo son: una economía pequeña y
abierta que produce bienes transables y no transables; el capital es
específico a ambos sectores, el factor trabajo es móvil entre sectores y
cuenta con rendimientos decrecientes, el precio doméstico de los
transables se determina por el tipo de cambio nominal y el nivel inter15
nacional de precios; el precio relativo de los no transables se determina a partir del equilibrio de la oferta y la demanda. Los productores en
cada sector maximizan su beneficio. El tipo de cambio real se define
como el precio de los bienes transables con relación a los no transables.
En este contexto, una expansión monetaria que genere un exceso de
gasto sobre el producto ocasionará un exceso de demanda en los mercados de bienes transables y no transables. En presencia de flujos de
capital, el desequilibrio en el mercado de bienes transables se traduce en
un incremento de las importaciones financiado por la cuenta de capitales. Esto hace que los desbalances en la cuenta comercial no se traduzcan, en el corto plazo, en movimientos en el tipo de cambio nominal. Debido a esto, el precio de los bienes transables no se altera. Por
el contrario, en el mercado de no transables el exceso de demanda
genera un incremento en el precio de estos bienes, resultando ello en
una reducción en el tipo de cambio real.
La versión del modelo es la siguiente:
TCREt = a0 – a1 (G/Y)t
πtn = b(TCRt-1 – TCREt-1)
a1 > 0
b>0
(1)
(2)
El tipo de cambio real de “equilibrio”, TCRE, se define en este
modelo como aquél que vacía el mercado de los bienes no transables
para un nivel dado de la demanda agregada en el corto y mediano
plazo. Este concepto difiere del concepto tradicional de tipo de cambio real de equilibrio como el tipo de cambio que induce el equilibrio
sostenible en la cuenta corriente para un nivel de producto determinado por los fundamentos de la economía, pues el interés del modelo
se centra en observar la dinámica del tipo de cambio real en el corto y
mediano plazo. La ecuación (1) representa pues, el equilibrio en el
mercado de bienes no transables, donde el TCRE depende
inversamente de la brecha gasto-producto, G/Y. La ecuación (2) refleja un proceso de ajuste parcial de los precios de los bienes no transables,
πn, respecto a la brecha entre el tipo de cambio real efectivo y el de
equilibrio. Sustituyendo (1) en (2) obtenemos:
πtn = -ba0 + bTCRt-1 + ba1(G/Y)t-1
16
(3)
La ecuación (3) supone que el precio de los no transables se desliza uniformemente en el tiempo para cerrar la brecha entre el tipo de
cambio actual y el de equilibrio. Ante un incremento en la brecha
gasto-producto, el TCRE cae y el ajuste hacia el nuevo equilibrio se
concreta vía incrementos en la inflación en los bienes no transables
con la consiguiente apreciación del TCR. De esta manera, πn dependerá del tipo de cambio real y de (G/Y). En este contexto, los efectos
de los instrumentos de política monetaria y el objetivo de política (inflación, tipo de cambio, reservas, entre otros), deberá pasar por la relación gasto-producto. Por ejemplo, una contracción de base monetaria que produzca un alza en las tasas de interés, reducirá la brecha
gasto-producto incrementando el tipo de cambio real de equilibrio.
En un régimen de tipo de cambio predeterminado, esto reducirá las
presiones inflacionarias en los bienes no transables.
17
4. Análisis empírico
En este estudio se emplea la metodología de los vectores
autorregresivos estructurales. La ventaja que ofrece este método, propuesto inicialmente por Sims (1986) y Bernanke (1986), sobre los
VAR tradicionales es que permite hacer que todos los supuestos de
identificación para recuperar las innovaciones estructurales a partir
de los residuos estimados del vector autorregresivo sean consistentes
con la teoría económica. Considérese el siguiente modelo en su forma
estructural (Enders, 1995):
BXt = Γ0 + Γ1Xt-1 + εt
donde B es la matriz de coeficientes que expresan la relación contemporánea entre las variables endógenas, Xt es un vector de n variables
endógenas, y εt son las innovaciones estructurales. Se asume que εt
son independientes y siguen una distribución normal. Premultiplicando
la expresión anterior por B-1 tenemos:
Xt = B-1Γ0 + B-1Γ1Xt-1 + B-1εt
Definiendo A0 = B-1Γ0, A1 = B-1Γ1 y εt = B-1εt, obtenemos el modelo estándar de estimación de los VAR:
Xt = A0 + A1Xt-1 + et
Para obtener las funciones impulso-respuesta debemos recuperar
las innovaciones estructurales, εt, a partir de los residuos et del VAR
en su forma tradicional. Con la metodología de los VAR estructurales,
podemos establecer restricciones sobre la matriz B basadas en la teoría económica, de manera que se obtengan ortogonalizaciones no
recursivas de los errores.
18
Para establecer los supuestos de identificación, en esta investigación se formularon restricciones de corto plazo relativas a la correlación contemporánea entre las variables, similares a las empleadas por
Cabrera y Lagos (2000) para la economía chilena. Consideramos que
estos supuestos son razonables para el caso venezolano. A continuación enumeramos los supuestos empleados, los cuales se detallan para
cada modelo en el Anexo:
• Se supone que la variable instrumento de política no responde
contemporáneamente a otras variables, excepto al comportamiento
del tipo de cambio nominal, a las ventas de divisas, al nivel de reservas internacionales y a la incidencia fiscal en la base monetaria7.
• Las variables reales (actividad, tipo de cambio real) responden con
rezago al resto de las variables, es decir, no existe correlación contemporánea con el resto de las variables.
• Las variables financieras, como el índice bursátil, responden
contemporáneamente a todas las variables, excepto a las reales, ya
que no se dispone de información sobre las mismas para la frecuencia mensual.
• El tipo de cambio nominal es predeterminado y por lo tanto no está
correlacionado contemporáneamente con ninguna otra variable8.
• Los precios sólo responden contemporáneamente al tipo de cambio
y no dependen de variables reales contemporáneas.
• El tipo de cambio real sólo reacciona contemporáneamente a cam-
bios en el tipo de cambio nominal, en los precios internacionales y
en los precios de los bienes no transables.
7 La variable Incidencia fiscal sobre la base monetaria, es calculada en el Departamento de
Análisis Económico del BCV. La metodología consiste en restar a todos los ingresos del gobierno, tanto internos como externos procedentes del público o del sistema bancario, los
egresos por concepto de operaciones cambiarias del gobierno central, transferencias de recursos hacia entes distintos del público o del sistema bancario y la variación de las cuentas mantenidas en el BCV.
8 Siendo el BCV el principal oferente de divisas en el mercado y bajo los regímenes de crawling
peg, control de cambios y bandas cambiarias existentes a lo largo del período, puede considerarse que el tipo de cambio nominal se comportó en forma predeterminada.
19
Los datos empleados son de frecuencia mensual y abarcan el período entre 1989 y 2000. Por una parte, esto puede constituir una limitación para nuestro estudio, dado que no pueden hacerse conclusiones generales para un período tan corto, particularmente para el ciclo
económico. Pero por otra parte, antes de 1989 se disponían de menos
instrumentos indirectos de política monetaria (ver Cuadro 1 del Anexo),
existían controles sobre las tasas de interés y controles sobre la cantidad de créditos a ciertos sectores económicos, lo cual distorsionaría
el análisis de los resultados sobre los mecanismos de transmisión. En
este sentido, preferimos limitar el estudio a los últimos diez años e
interpretar con cautela los resultados.
Para cada mecanismo se incluye el conjunto de variables pertinentes y se presentan los resultados de las funciones de impulso-respuesta. Las variables empleadas se detallan en el Cuadro N° 2, así
como el orden de integración de cada una.
Cuadro N° 2
Variables utilizadas y el orden de integración
Abreviación
Descripción
Orden de
integración1/
CICLO
Logaritmo del PIB2/ real desestacionalizado menos la tendencia de
largo plazo del PIB real estimada a través del filtro de Hodrick-Prescott
LCIBBCV
Logaritmo del Crédito interno bruto del Banco Central (Estadísticas
Financieras del FMI, línea 12)
LCIR
Logaritmo del Crédito interno real (Estadísticas Financieras del FMI,
línea 52)
LIB
Logaritmo del Índice de capitalización bursátil de la Bolsa de Valores
de Caracas
LINCIDENCIA Logaritmo de la Incidencia fiscal sobre la base monetaria4/
LIPCS
Logaritmo del Índice de precios al consumidor de servicios
(no transables) Base 1997=100
LIS
Logaritmo del Índice de inflación subyacente o Núcleo inflacionario3/
LM1N
Logaritmo de la M1 (efectivo más depósitos a la vista) en términos
nominales
LRINFMI
Logaritmo de las Reservas internacionales operativas (Estadísticas
Financieras del FMI, línea 1L)
LTCN
Logaritmo del Tipo de cambio nominal
LTCR
Logaritmo del Tipo de cambio real estimado como el cociente del IPC
de bienes transables entre el IPC de no transables5/
LVENTA
Logaritmo de las Ventas netas de divisas del Banco Central6/
DIAS
I(0)
I(1)
I(1)
I(1)
I(0)
I(2)
I(2)
I(1)
I(1)
I(1)
I(0)
I(1)
Número de días laborales en el mes
A menos que se indique lo contrario, los datos son obtenidos de las estadísticas publicadas por el BCV.
1/ Utilizando el Test de Dickey-Fuller aumentado para raíces unitarias. 2/ El PIB mensual es obtenido a partir de la
mensualización del PIB trimestral empleando las variaciones del Igaem (Indicador de producción mensual calculado por el
DAC, BCV). 3/ Calculado por el DAC, BCV. 4/ Calculado por el Departamento de Análisis Económico, BCV. 5/ La “proxy”
del IPC de transables es el IPC de bienes y la de no transables es el IPC de servicios. 6/ Vicepresidencia de Operaciones
Internacionales, BCV.
20
En todos los modelos se incluyeron las variables tipo de cambio
nominal, ventas netas de divisas, nivel de reservas internacionales netas
e incidencia fiscal sobre la base monetaria, con el fin de controlar por
la información que pueda incidir en el comportamiento de la política
monetaria, para tratar de evitar problemas de especificación que puedan originar la paradoja de los precios9. Estas variables constituyen
información que la autoridad monetaria posee al momento de ejecutar
sus políticas, por lo cual consideramos relevante incluirlas para controlar por cualquier efecto de feedback entre estas variables y la variable de política. Igualmente, se incluyó como variable exógena en los
modelos el número de días laborales para controlar por el tiempo efectivo de trabajo. Para los modelos monetario y de crédito se tomó como
indicador de los precios el Índice del núcleo inflacionario, por considerarlo una buena “proxy” de los componentes de los precios que
pueden estar mayormente afectados por la cantidad de dinero. El índice bursátil de la Bolsa de Valores de Caracas se tomó como “proxy”
del valor de los activos financieros en el modelo monetario.
Como vimos en la Sección 2, la instrumentación de la programación monetaria en Venezuela ha estado fundamentada en agregados
monetarios. Por esta razón empleamos como variables de política agregados monetarios, tales como el crédito interno bruto del Banco Central, M1 y el dinero base. Estudios previos para el caso venezolano
también han empleado agregados monetarios como instrumento de
política. Por ejemplo, Guerra, Rodríguez y Sánchez (1996), utilizan
M1 para estudiar los mecanismos de transmisión de la política monetaria en Venezuela, por encontrar que con este agregado se obtienen
mejores resultados que con el dinero base. Por otra parte, López y
Zambrano (2000), encuentran que el agregado monetario que tiene
mayor impacto en la inflación, para el caso venezolano, es M1. En
este estudio decidimos incorporar, además, el crédito bruto del Banco
9 Si el impulso de política monetaria contiene respuestas de la autoridad monetaria a variables no
incluidas en el VAR, ello distorsiona los resultados de las funciones impulso-respuesta. Este
problema se ha identificado como uno de los causantes de la paradoja de los precios (price
puzzle). Algunos investigadores han encontrado que al incluir en el VAR variables que puedan
ser buenas “proxy” de información que disponga la autoridad monetaria sobre la inflación
futura (precios de commodities, por ejemplo), el problema de identificación puede ser eliminado
(Bernanke (1995)). En el caso venezolano, incluimos variables cambiarias y fiscales.
21
Central, siendo éste el componente de la base monetaria sobre el cual
el Banco Central tiene mayor control. Los resultados con dinero base
son similares a aquellos obtenidos con M1, por lo cual sólo mostramos los resultados con dinero base en el Anexo.
Las estimaciones de los VAR estructurales se realizaron con las
variables tanto en niveles como en primeras diferencias. Dado que
nuestro interés se centra en el análisis de las funciones impulso-respuesta y no en realizar predicciones a partir del modelo, el empleo de
las variables en niveles para las estimaciones no representa mayor
problema10. Por otra parte, al estimar con variables en niveles se conserva información de las variables que se pierde al tomar diferencias.
Se emplearon los criterios de información de Schwarz y de HannanQuinn para establecer la estructura de rezagos11. La estimación de los
vectores autorregresivos para cada modelo se realiza por mínimos
cuadrados ordinarios y los resultados se presentan en el Anexo. La
estimación de la matriz B para la ortogonalización de los residuos se
realiza por el método de máxima verosimilitud, empleando las restricciones establecidas para cada modelo. Se probó la inclusión de
variables dummies en las fechas durante las cuales estuvo vigente el
control de cambio, pero no resultaron significativas ni mejoraron los
resultados de la estimación, por lo que decidimos excluirlas de las
estimaciones que presentamos. Las versiones de los modelos en niveles ajustaron mejor los datos y a partir de ellas se derivaron las funciones impulso-respuesta que mostramos a continuación.
10 Existe una discusión en la literatura sobre si deben incluirse variables en niveles o en diferencias. Las variables en diferencia son generalmente estacionarias, lo cual no necesariamente es
el caso de las variables en niveles. Quienes advocan por incluir las variables diferenciadas
consideran que al trabajar con variables estacionarias nos acercamos al proceso generador de
datos y es posible interpretar los distintos tests de hipótesis. En tanto, los autores que prefieren
incluir las variables en niveles señalan que al diferenciar se puede perder información valiosa
para las funciones impulso-respuesta, que constituyen el centro de este tipo de análisis. Ver
Cabrera y Lagos (1998).
11 Al realizar la prueba para un número de rezagos no mayor de 6, generalmente obteníamos que
la estructura óptima de rezagos es de 1. Al realizar las pruebas incluyendo hasta 12 rezagos, el
número óptimo de rezagos era mayor; sin embargo, los grados de libertad disminuían
significativamente al incluir más de 6 rezagos en los modelos, arrojando resultados inestables.
Por esta razón, decidimos optar por incluir sólo un rezago en los modelos.
22
Seguidamente estimamos una función de reacción para el Banco
Central y luego contrastamos los distintos modelos para los mecanismos de transmisión de la política monetaria.
4.1Función de reacción del Banco Central
En este apartado se pretende indagar a continuación si el Banco
Central ajusta la política monetaria en función del desempeño de variables como la inflación y la brecha del producto con respecto a su
tendencia. Por ejemplo, la regla de Taylor (Taylor, 1993), sugiere la
aplicación de una política restrictiva cuando la inflación excede su
objetivo o el producto está por encima de su tendencia.
Para el caso venezolano queremos averiguar cómo reacciona la
política monetaria, no sólo ante el ciclo y la inflación (si opera la regla de Taylor), sino también qué tanto es afectada por variables ligadas a la política cambiaria, tales como las ventas netas de divisas, las
variaciones del tipo de cambio nominal y el nivel de reservas internacionales. Igualmente resulta interesante indagar si efectivamente las
variables de origen fiscal tienen un impacto importante en el comportamiento de los agregados monetarios.
Los resultados de las funciones impulso-respuesta, mostradas
en la página siguiente12, sugieren que la política monetaria no reacciona ante desviaciones del producto respecto a su tendencia en el
corto plazo, dado que la respuesta de las variables de política, M1 y
crédito del Banco Central, a la variable ciclo no es significativa13.
Sin embargo, no podemos hacer inferencias sobre el comportamiento de la política monetaria frente a los ciclos económicos a partir de
este resultado, ya que sólo contamos con un período de diez años
para los datos. Para obtener conclusiones más robustas en este sen-
12 Los resultados con dinero base como variable de política son muy similares a los resultados
con M1. Por ello sólo incluimos los resultados con M1, y los resultados con dinero base los
colocamos como Anexo.
13 El criterio de significación empleado en el informe es del 5%.
23
tido, deberíamos emplear datos trimestrales o anuales para períodos
más largos. Lamentablemente, no se disponen de los datos necesarios
para este tipo de análisis.
En cuanto a los precios, se observa una respuesta positiva de las
variables de política monetaria a los precios y significativa a partir
del mes 7, cuando la variable de política es el crédito del Banco Central. Esto sugiere que la política monetaria ha sido pasiva en cuanto a
los precios: se evidencian aumentos de los agregados monetarios con
rezago probablemente para cubrir el incremento nominal de la demanda de saldos monetarios, generado éste por el incremento del nivel de precios.
En cuanto a las variables relacionadas con la política cambiaria
(tipo de cambio y ventas netas de divisas) los resultados parecen diferir según se tome a M1 o al crédito del Banco Central como variable
de política. Para el caso de M1, el Banco Central parece responder
con un recorte temporal y significativo de liquidez ante incrementos
en las ventas netas de divisas, lo cual puede corresponderse con una
política dirigida a mantener el tipo de cambio.
Sin embargo, cuando consideramos como variable de política al
crédito del Banco Central, los resultados de la función de reacción
sugieren una respuesta pasiva de la institución a incrementar el crédito ante shocks positivos tanto en el tipo de cambio como en las
ventas netas de divisas. Esta discrepancia en los resultados nos resulta un tanto paradójica y no tenemos una hipótesis clara de qué
pueda explicarla.
Con las reservas internacionales se evidencia una respuesta negativa de las variables de política con un rezago de al menos diez períodos, a partir del momento en que la respuesta se torna significativa a
shocks positivos en el nivel de las RIN. Ello puede sugerir que la
política monetaria trata de esterilizar aumentos no esperados en el
nivel de reservas internacionales.
24
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log crédito bruto del Banco Central
Respuesta de LCIBBCV
a innovaciones en CICLO
Respuesta de LCIBBCV
a innovaciones en LIS
.12
.12
.08
.08
.08
.04
.04
.04
.00
.00
.00
-.04
-.04
-.04
-.08
-.08
-.08
-.12
-.12
5
10
15
-.12
20
5
Respuesta de LCIBBCV
a innovaciones en LINCIDENCIA
10
15
20
5
Respuesta de LCIBBCV
a innovaciones en LVENTA
.12
.12
.08
.08
.08
.04
.04
.04
.00
.00
.00
-.04
-.04
-.04
-.08
-.08
-.08
-.12
-.12
10
15
10
15
20
Respuesta de LCIBBCV
a innovaciones en LRINFMI
.12
5
Respuesta de LCIBBCV
a innovaciones en LTCN
.12
-.12
20
5
10
15
20
5
10
15
20
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log M1 nominal
Respuesta de LM1N
a innovaciones en CICLO
.06
Respuesta de LM1N
a innovaciones en LIS
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06
-.06
-.08
-.08
5
.06
10
15
20
Respuesta de LM1N
a innovaciones en LINCIDENCIA
-.08
5
10
15
20
Respuesta de LM1N
a innovaciones en LVENTA
.06
5
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06
-.06
-.08
-.08
10
15
20
10
15
20
Respuesta de LM1N
a innovaciones en LRINFMI
.06
.04
5
Respuesta de LM1N
a innovaciones en LTCN
.06
-.08
5
10
15
25
20
5
10
15
20
Por su parte, el impacto positivo de las variables fiscales sobre
los agregados monetarios parece ser de carácter transitorio. Cuando
tomamos como medida de política el crédito del Banco Central, la
respuesta no es significativa, mientras que con M1 la respuesta sólo
resulta significativa por 4 períodos. Lo anterior evidencia un comportamiento pasivo de la política monetaria ante shocks fiscales. Nos
resulta interesante que la respuesta expansiva de la política monetaria en el corto plazo ante incrementos del gasto público, no parece
verse contrarrestada por recortes en períodos siguientes y que sólo
se generen restricciones de liquidez ante shocks en las reservas internacionales. Esto quizás no sea sorprendente, dada la presencia de
regímenes cambiarios predeterminados durante la mayor parte del
período analizado.
De estos resultados se desprende que las decisiones de política
monetaria se ven afectadas por un conjunto de variables por las que
debemos controlar para obtener los impulsos de política, lo cual se
analiza en la próxima sección.
4.2 Mecanismos de transmisión
4.2.1 Mecanismo monetario
Las variables incluidas en el VAR son: LCIBBCV o M1, LIB,
CICLO, LIS, LTCN, LINCIDENCIA, LVENTA, LRINFMI. Los resultados para este mecanismo sugieren una respuesta positiva y significativa del ciclo durante dos períodos, cuando la variable de política es el crédito del Banco Central. Igualmente, los precios muestran un impacto positivo y significativo entre los períodos 2 al 22.
La respuesta del índice bursátil a un shock en la variable de política
no resulta significativa. Esto puede deberse a que el índice bursátil
no resulta una “proxy” adecuada del valor de los activos financieros, dadas las imperfecciones y poca profundidad del mercado de
capitales en Venezuela.
26
Mecanismo monetarista
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log crédito bruto del Banco Central
.006
Respuesta de CICLO
a innovaciones en LCIBBCV
Respuesta de LIS
a innovaciones en LCIBBCV
.10
.08
.004
Respuesta de LIB
a innovaciones en LCIBBCV
.16
.12
.06
.002
.08
.04
.000
.04
.02
-.002
.00
.00
-.004
-.04
-.02
5
10
15
20
5
10
15
20
5
10
15
20
Mecanismo monetarista
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log M1 Nominal
Respuesta de CICLO
a innovaciones en LM 1N
Respuesta deLIS
a innovaciones en LM 1N
.006
.10
.004
.08
.002
.06
.000
.04
-.002
.02
-.004
.00
Respuesta de LIB
a innovaciones en LM 1N
.12
.08
.04
.00
-.006
-.04
-.08
-.02
5
10
15
20
5
10
15
20
5
10
15
20
Como alternativa, podría considerarse el precio de un activo de
capital como los bienes inmobiliarios. Desafortunadamente, para esta
variable sólo se disponen de datos de frecuencia mensual a partir de
1997. Con M1, los resultados son bastante similares, sólo que la respuesta de los precios no resulta significativa.
4.2.2 Mecanismo del crédito
Las variables empleadas en el VAR son: LCIBBCV o M1, LCIR,
CICLO, LIS, LINCIDENCIA, LTCN, LRINFM1, LVENTA. Para este
mecanismo tenemos resultados similares tanto al emplear M1 como
el crédito del banco central. Se evidencia en ambos casos una expansión significativa y transitoria del crédito real del sistema financiero
en respuesta a un impulso de la variable de política14.
14 Resultados similares se obtuvieron al emplear el crédito nominal del sistema financiero en el
modelo en lugar del crédito real.
27
La variable ciclo también evidencia un incremento transitorio ante
shocks de M1 o del crédito del Banco Central (significativo entre el
mes 2 y el mes 4). Los precios muestran una respuesta positiva y significativa entre los meses 2 y 21, cuando la variable de política es el
crédito del Banco Central, pero no es significativa para M1.
Mecanismo de crédito
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log crédito bruto del Banco Central
Respuesta de CICLO
a innovaciones en LCIBBCV
Respuesta de LIS
a innovaciones en LCIBBCV
Respuesta de LIS
a innovaciones en LCIR
.006
. 08
.08
.004
. 06
.06
.002
. 04
.04
.000
. 02
.02
Respuesta de LCIR
a innovaciones en LCIBBCV
.06
.04
.02
.00
-.002
. 00
.00
-.004
-.02
-.02
-.006
-.04
5
10
15
20
-.02
-.04
5
10
15
-.04
20
5
10
15
20
5
10
15
20
Mecanismo de crédito
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log M1 Nominal
.006
Repuesta de CICLO
a innovaciones
en LMIN
a innovaciones
en LM1N
Respuesta de LIS
a innovaciones
a innovacionesenenLMIN
LM1N
.05
Respuesta de LCIR
aa innovaciones
enLM1N
LMIN
innovaciones en
.03
.04
.02
.004
.03
.01
.02
.002
.01
.000
.00
.00
-.01
-.01
-.002
-.02
5
10
15
20
-.02
5
10
15
20
5
10
15
20
El modelo sugiere que las variables crédito real del sistema financiero y ciclo se ven afectadas transitoriamente por el shock de
política, pero que luego el efecto se traslada en forma más permanente hacia precios. Se observa, además una relación directa entre crédito
y precios: ante un shock al crédito real del sistema financiero (LCIR)
los precios muestran una respuesta positiva y significativa durante los
primeros nueve meses.
28
4.2.3 Mecanismo cambiario
Las variables del VAR son: LCIBBCV o M1, LCIBBCV, CICLO, LIPCS, LTCR, LVENTA, LRINFMI, LINCIDENCIA, LTCN.
Bajo el mecanismo cambiario, la respuesta del ciclo a los shocks de
política no resultó significativa. Los precios de los bienes no
transables muestran una respuesta positiva pero sólo resulta significativa cuando se emplea el crédito del Banco Central como variable
de política. El tipo de cambio real experimenta un incremento (apreciación) que resulta significativo hasta el mes 12, independientemente de la variable de política.
De estos tres modelos, el que mejor parece ajustarse a los datos es
el del mecanismo de crédito. Ello, sin embargo, no descarta que pueda estar operando el canal monetario en la economía y que nuestro
resultado para ese modelo se deba a que el índice bursátil no constituye una buena “proxy” para el valor de los activos financieros.
Mecanismo cambiario
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv.Respuesta
estándar
del error)
Respuesta de LIPCS
de LTCR
a innovaciones
en LCIBBCV
a innovaciones
endel
LCIBBCV
Meta
intermedia:
Log
crédito
bruto
Banco
Central
.05
.03
Respuesta de CICLO
a innovaciones en LCIBBCV
.008
.04
.006
.02
.03
.004
.01
.02
.002
.01
.000
.00
.00
-.01
-.002
-.01
-.004
-.02
5
10
15
20
-.02
5
10
15
20
5
10
15
20
Mecanismo cambiario
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log M1 Nominal
Respuesta de CICLO
a innovaciones en LM1N
Respuesta de LIPCS
a innovaciones en LM1N
.005
.06
.004
.05
.003
.04
.002
.03
.001
.02
.000
.01
-.001
.00
-.002
Respuesta de LTCR
a innovaciones en LM1N
.020
.015
.010
.005
.000
-.005
-.01
-.003
-.02
5
10
15
20
-.010
5
10
29
15
20
5
10
15
20
Cabe resaltar que en todos los casos se logró eliminar el problema
del price puzzle; como vimos anteriormente, el Banco Central parece
incluir información de variables fiscales y cambiarias en su función
de reacción. Pensamos que el controlar por esas variables en los
modelos anteriores contribuyó a la eliminación de los problemas de
especificación que generan el problema del price puzzle.
Por último, vale la pena mencionar que se ensayaron también
modelos con corrección de errores para los distintos mecanismos de
transmisión, aunque nos concentramos fundamentalmente en el examen del mecanismo de crédito. En primer lugar, no encontramos relaciones a largo plazo estables y coherentes teóricamente para la totalidad de las variables del modelo. Adicionalmente, encontramos que
restringiendo la relación de largo plazo únicamente al agregado monetario y a la inflación subyacente, siguiendo a Guerra, Rodríguez y
Sánchez (1998), hallamos efectivamente una relación de cointegración.
Para derivar las funciones impulso-respuesta del modelo de vector
con corrección de errores, VEC, empleamos la descomposición de
Choleski y encontramos que cualquier alteración en el orden de las
variables altera en gran medida los resultados. Por otra parte, notamos que la bondad del ajuste del modelo VEC no supera a la del modelo con vectores autorregresivos estructurales, por lo que pensamos
que los resultados con los VAR estructurales son más adecuados en
este caso.
30
5. Conclusiones
En este trabajo analizamos la función de reacción del Banco Central y los mecanismos de transmisión de la política monetaria en Venezuela empleando la técnica de vectores autorregresivos estructurales. Los resultados de la estimación de la función de reacción del Banco Central no parecen sorprendentes, ya que sugieren que la política
monetaria exhibe por una parte, cambios permanentes y en la misma
dirección frente a shocks en los precios y por otra, respuestas transitorias ante shocks de origen fiscal. Las fluctuaciones del producto en el
muy corto plazo parecen no producir cambios en la dirección de la
política monetaria. En respuesta a shocks positivos en las reservas
internacionales, la autoridad monetaria parece responder con recortes
de liquidez o crédito con rezago. Ello puede responder a una estrategia de esterilización de recursos, para evitar que movimientos en las
reservas afecten los saldos monetarios. Recordemos que la política
monetaria ha estado limitada durante la mayor parte del período analizado por regímenes cambiarios con cierto grado de predeterminación,
lo cual no deja muchos grados de libertad para la conducción de una
política contracíclica tendiente a suavizar las fluctuaciones del producto o a recortar la liquidez ante presiones inflacionarias.
Al controlar por variables fiscales y cambiarias que intervienen
en la función de reacción del Banco Central, logramos eliminar el
problema de la paradoja de los precios en los modelos de mecanismos
de transmisión. El modelo del mecanismo de crédito es el que parece
ajustar mejor los datos, lo cual sugiere que este mecanismo puede
estar operando en nuestra economía. Ello no significa, sin embargo,
que los otros mecanismos no estén operando. En el caso del mecanismo monetario tradicional, el que el modelo planteado no ajuste bien
los datos puede deberse a que el índice bursátil representa una “proxy”
inadecuada del valor de los activos financieros.
31
Checcetti (1995), entre otros autores, señala algunas limitaciones
del uso de los datos agregados para contrastar la existencia del mecanismo de crédito. Particularmente, se hace difícil distinguir entre los
efectos del mecanismo monetario y de crédito con datos agregados,
pues la cercana relación entre activos y pasivos de la banca, representa una traba para identificar si los efectos sobre el producto provienen
del lado de la demanda, tal como sugiere el mecanismo monetario o
de la oferta, como predice el mecanismo de crédito. En este sentido,
los resultados de este trabajo no deben tomarse como concluyentes.
Estudios posteriores sobre el tema deberían emplear datos de corte
transversal de las empresas para verificar si la política monetaria tiene efectos distributivos, lo cual podría arrojar evidencia más sólida a
favor de la presencia del mecanismo de crédito. Dichos estudios están
sujetos, por supuesto, a la disponibilidad de datos en Venezuela.
32
ANEXO
33
34
35
36
37
38
39
Cuadro N° 2
Supuestos de identificación para la función de reacción del Banco Central
Variable
Dependencia contemporánea
LCIBBCV
CICLO
LIS
LTCN
LINCIDENCIA
LVENTA
LRINFMI
LINCIDENCIA, LTCN, LVENTA, LRINFMI
Exógena
LTCN
Exógena
Exógena
Exógena
LVENTA
Supuestos de identificación para el mecanismo monetario
Variable
Dependencia contemporánea
LINCIDENCIA
LTCN
LCIBBCV
LIB
CICLO
LIS
LVENTA
LRINFMI
Exógena
Exógena
LINCIDENCIA, LTCN, LVENTA, LRINFMI
LINCIDENCIA, LTCN, LIS, LRINFMI
Exógena
LTCN
Exógena
LVENTA
Supuestos de identificación para el mecanismo crediticio
Variable
Dependencia contemporánea
LINCIDENCIA
LTCN
LCIBBCV
LCIR
CICLO
LIS
LRINFMI
LVENTA
Exógena
Exógena
LINCIDENCIA, LTCN, LVENTA, LRINFMI
LTCN, LCIBBCV
Exógena
LTCN
LVENTA
Exógena
Supuestos de identificación para el mecanismo cambiario
Variable
Dependencia contemporánea
LINCIDENCIA
LTCN
LCIBBCV
CICLO
LIPCS
LTCR
LVENTA
LRINFMI
Exógena
Exógena
LINCIDENCIA, LTCN, LVENTA, LRINFMI
Exógena
LTCN
LTCN, LIPCS
Exógena
LVENTA
40
Cuadro N° 3
Estimadores del vector autorregresivo para el mecanismo monetario
Instrumento de política monetaria: Log crédito bruto del Banco Central
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LCIBBCV
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.136859
(0.09152)
[ 1.49537]
0.004161
0.007807
0.004497
0.004347 -3.59E-05
(0.01214) (0.01327) (0.03431) (0.00644) (0.00242)
[ 0.34274] [ 0.58815] [ 0.13105] [ 0.67550] [-0.01483]
0.172519
0.012370
(0.13926) (0.01324)
[ 1.23880] [ 0.93398]
LTCN(-1)
-0.757237
(0.62009)
[-1.22117]
0.772122 -0.092168
0.047874 -0.107354
0.012955
(0.08226) (0.08994) (0.23249) (0.04360) (0.01642)
[ 9.38622] [-1.02478] [ 0.20592] [-2.46217] [ 0.78907]
-0.739766
0.233628
(0.94355) (0.08973)
[-0.78402] [ 2.60363]
LCIBBCV(-1)
0.360037
(0.48400)
[ 0.74387]
0.107688
0.894287
0.085424
0.070989
0.034986
(0.06421) (0.07020) (0.18147) (0.03403) (0.01282)
[ 1.67717] [ 12.7389] [ 0.47073] [ 2.08593] [ 2.73008]
0.309541 -0.263482
(0.73648) (0.07004)
[ 0.42030] [-3.76193]
LIB(-1)
0.340381
(0.16749)
[ 2.03221]
0.046732
0.112245
0.921822
0.011401 0.003451
(0.02222) (0.02429) (0.06280) (0.01178) (0.00443)
[ 2.10317] [ 4.62035] [ 14.6789] [ 0.96804] [ 0.77824]
-0.470705
0.105450
(0.25486) (0.02424)
[-1.84689] [ 4.35068]
CICLO(-1)
-0.425161
(1.32092)
[-0.32187]
0.179522 -0.063882 -0.302623
0.164650
0.090968
(0.17523) (0.19159) (0.49526) (0.09288) (0.03497)
[ 1.02447] [-0.33343] [-0.61104] [ 1.77272] [ 2.60099]
0.816900 -0.171993
(2.00996) (0.19115)
[ 0.40643] [-0.89979]
LIS(-1)
0.825578
(0.29011)
[ 2.84577]
0.072761
0.101812 -0.051686
0.009214
0.962921
(0.03849) (0.04208) (0.10877) (0.02040) (0.00768)
[ 1.89059] [ 2.41962] [-0.47518] [ 0.45170] [ 125.361]
0.393967 -0.032053
(0.44144) (0.04198)
[ 0.89247] [-0.76351]
LVENTA(-1)
-0.190364
(0.06201)
[-3.06974]
0.004581
0.005690 -0.001789
0.008195 -0.000951
(0.00823) (0.00899) (0.02325) (0.00436) (0.00164)
[ 0.55685] [ 0.63256] [-0.07694] [ 1.87947] [-0.57909]
0.160257 -0.016469
(0.09436) (0.00897)
[ 1.69834] [-1.83521]
LRINFMI(-1)
0.343517
(0.23350)
[ 1.47119]
-0.197928 -0.238401 -0.071541
0.010075 -0.064053
(0.03098) (0.03387) (0.08755) (0.01642) (0.00618)
[-6.38979] [-7.03937] [-0.81718] [ 0.61367] [-10.3607]
1.424338
0.933302
(0.35530) (0.03379)
[ 4.00888] [ 27.6217]
C
1.345910
(2.05616)
[ 0.65457]
1.245155
2.005848
0.649770 -0.455444
0.467908
(0.27277) (0.29823) (0.77092) (0.14458) (0.05444)
[ 4.56485] [ 6.72583] [ 0.84285] [-3.15017] [ 8.59475]
-7.304393
0.932343
(3.12872) (0.29754)
[-2.33463] [ 3.13349]
DIAS
0.016570
(0.02370)
[ 0.69927]
0.000654 -0.003479 -0.002330
0.004572
0.000213
(0.00314) (0.00344) (0.00888) (0.00167) (0.00063)
[ 0.20805] [-1.01212] [-0.26224] [ 2.74398] [ 0.34005]
0.010718 -0.001703
(0.03606) (0.00343)
[ 0.29726] [-0.49661]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.909096
0.900995
12.79793
0.355967
112.2287
-37.60850
0.857811
1.101913
12.13907
1.131309
0.997629
0.997418
0.225227
0.047223
4721.962
186.6076
-3.182118
-2.938016
5.423958
0.929290
0.332764
0.273307
29.63198
0.541651
5.596738
-84.20465
1.697381
1.941483
6.593317
0.635395
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.997485
0.997261
0.269234
0.051630
4450.317
176.7024
-3.003646
-2.759545
8.384651
0.986442
1.58E-19
1142.695
-19.14766
-17.19485
41
0.977722
0.975737
1.799078
0.133464
492.5110
71.28302
-1.104199
-0.860097
7.832952
0.856820
0.379379
0.324076
0.063275
0.025030
6.860021
257.0719
-4.451746
-4.207644
0.001678
0.030444
0.999940
0.999935
0.008972
0.009425
187348.5
365.4851
-6.405138
-6.161036
6.453516
1.166925
0.961700
0.958287
0.267993
0.051511
281.7863
176.9589
-3.008269
-2.764167
9.191311
0.252212
Cuadro N° 4
Estimadores del vector autorregresivo para el mecanismo crediticio
Instrumento de política monetaria: Log crédito bruto del Banco Central
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LCIBBCV
LCIR
CICLO
LIS
LRINFMI
LVENTA
LINCIDENCIA(-1)
0.150013
(0.09105)
[ 1.64764]
0.007846
0.014432
0.005867
0.005019
0.000386
(0.01216) (0.01453) (0.01366) (0.00643) (0.00236)
[ 0.64547] [ 0.99351] [ 0.42963] [ 0.78049] [ 0.16349]
0.017524
0.150246
(0.01403) (0.14001)
[ 1.24875] [ 1.07313]
LTCN(-1)
-1.075068
(0.64883)
[-1.65693]
0.827776 -0.076121 -0.292001 -0.105781
0.024971
(0.08663) (0.10352) (0.09732) (0.04583) (0.01682)
[ 9.55580] [-0.73532] [-3.00051] [-2.30835] [ 1.48484]
0.192185 -0.516039
(0.10000) (0.99772)
[ 1.92180] [-0.51722]
LCIBBCV(-1)
1.185555
(0.49029)
[ 2.41809]
0.113183
1.035247
0.140869
0.085368
0.026806
(0.06546) (0.07822) (0.07354) (0.03463) (0.01271)
[ 1.72908] [ 13.2343] [ 1.91562] [ 2.46533] [ 2.10939]
-0.069670 -0.597667
(0.07557) (0.75393)
[-0.92197] [-0.79274]
LCIR(-1)
-0.971273
(0.47981)
[-2.02430]
0.111927 -0.021742
(0.06406) (0.07655)
[ 1.74724] [-0.28402]
0.800192 -0.002348
0.027794
(0.07197) (0.03389) (0.01244)
[ 11.1191] [-0.06930] [ 2.23497]
-0.160042
0.810080
(0.07395) (0.73781)
[-2.16414] [ 1.09795]
CICLO(-1)
0.212110
(1.31499)
[ 0.16130]
0.199893
0.064566
0.127755
0.177735
0.087128
(0.17556) (0.20980) (0.19723) (0.09287) (0.03408)
[ 1.13857] [ 0.30775] [ 0.64774] [ 1.91372] [ 2.55633]
-0.013114
0.081513
(0.20268) (2.02210)
[-0.06471] [ 0.04031]
LIS(-1)
0.395686
(0.29092)
[ 1.36014]
0.068455
0.026649
0.070708
0.001548
0.966960
(0.03884) (0.04642) (0.04363) (0.02055) (0.00754)
[ 1.76247] [ 0.57414] [ 1.62049] [ 0.07536] [ 128.239]
-0.133811
0.869539
(0.04484) (0.44735)
[-2.98429] [ 1.94376]
LRINFMI(-1)
0.145186
(0.30109)
[ 0.48220]
-0.106238 -0.159056 -0.101914
0.018067 -0.047813
(0.04020) (0.04804) (0.04516) (0.02127) (0.00780)
[-2.64280] [-3.31098] [-2.25671] [ 0.84957] [-6.12673]
0.940153
(0.04641)
[ 20.2589]
LVENTA(-1)
-0.192396
(0.06200)
[-3.10315]
0.003855
0.004475
0.006264
0.008072 -0.001040
(0.00828) (0.00989) (0.00930) (0.00438) (0.00161)
[ 0.46572] [ 0.45242] [ 0.67362] [ 1.84341] [-0.64717]
-0.017355
0.164040
(0.00956) (0.09534)
[-1.81614] [ 1.72058]
C
7.474964
(4.51933)
[ 1.65400]
-0.053599
1.421912
1.693293 -0.513533
0.201590
(0.60338) (0.72105) (0.67785) (0.31919) (0.11714)
[-0.08883] [ 1.97200] [ 2.49804] [-1.60887] [ 1.72097]
1.602018 -11.12864
(0.69656) (6.94951)
[ 2.29991] [-1.60136]
DIAS
0.015277
(0.02365)
[ 0.64594]
-0.000291 -0.004838 -0.003188
0.004434
8.25E-05
(0.00316) (0.00377) (0.00355) (0.00167) (0.00061)
[-0.09201] [-1.28223] [-0.89882] [ 2.65455] [ 0.13460]
-0.002544
0.014172
(0.00365) (0.03637)
[-0.69783] [ 0.38969]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.909068
0.900965
12.80184
0.356021
112.1910
-37.62543
0.858116
1.102218
12.13907
1.131309
0.997598
0.997384
0.228194
0.047533
4660.431
185.8813
-3.169033
-2.924931
5.423958
0.929290
0.956538
0.952665
0.304115
0.054873
246.9831
169.9412
-2.881823
-2.637721
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.996955
0.996684
0.325880
0.056803
3674.795
166.1048
-2.812699
-2.568597
8.384651
0.986442
1.65E-20
1268.049
-21.40629
-19.45347
42
0.971870
0.969364
0.287998
0.053399
387.7242
172.9632
-2.936274
-2.692172
4.308007
0.305082
0.373650
0.317837
0.063859
0.025145
6.694642
256.5619
-4.442558
-4.198456
0.001678
0.030444
0.999943
0.999937
0.008600
0.009228
195442.5
367.8324
-6.447431
-6.203330
6.453516
1.166925
1.440151
(0.46300)
[ 3.11048]
0.318365
0.257625
30.27141
0.547464
5.241465
-85.38955
1.718731
1.962832
6.593317
0.635395
Cuadro N° 5
Estimadores del vector autorregresivo para el mecanismo cambiario
Instrumento de política monetaria: Log crédito bruto del Banco Central
Muestra: 1991:01 2000:12
Observaciones incluidas: 112
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LCIBBCV
CICLO
LIPCS
LTCR
LVENTA LRINFMI
LINCIDENCIA(-1)
0.168422
(0.09123)
[ 1.84614]
0.007229
0.014706
0.003614
0.000462
0.000157
(0.01100) (0.01402) (0.00631) (0.00229) (0.00280)
[ 0.65740] [ 1.04910] [ 0.57224] [ 0.20154] [ 0.05599]
0.140749
0.016504
(0.13755) (0.01411)
[ 1.02326] [ 1.17004]
LTCN(-1)
-0.718713
(0.63780)
[-1.12687]
0.816683 -0.052989 -0.109156
0.023694
0.011430
(0.07687) (0.09800) (0.04415) (0.01604) (0.01959)
[ 10.6235] [-0.54072] [-2.47248] [ 1.47755] [ 0.58331]
-0.973264
0.264470
(0.96163) (0.09862)
[-1.01210] [ 2.68181]
LCIBBCV(-1)
0.740337
(0.53625)
[ 1.38057]
0.325474
1.108030
0.063141
0.022357
0.078258
(0.06464) (0.08239) (0.03712) (0.01348) (0.01647)
[ 5.03553] [ 13.4478] [ 1.70102] [ 1.65816] [ 4.75014]
-0.556105 -0.150293
(0.80853) (0.08292)
[-0.68780] [-1.81260]
CICLO(-1)
-0.086853
(1.33222)
[-0.06519]
0.235009
0.059574
0.175476
0.097239
0.016728
(0.16057) (0.20469) (0.09222) (0.03350) (0.04093)
[ 1.46355] [ 0.29104] [ 1.90287] [ 2.90302] [ 0.40871]
0.238804 -0.051095
(2.00864) (0.20599)
[ 0.11889] [-0.24805]
LIPCS(-1)
0.642276
(0.47163)
[ 1.36183]
-0.171601 -0.074713
0.031368
0.969498 -0.095321
(0.05685) (0.07246) (0.03265) (0.01186) (0.01449)
[-3.01870] [-1.03102] [ 0.96084] [ 81.7585] [-6.57869]
1.148787 -0.088808
(0.71109) (0.07292)
[ 1.61553] [-1.21783]
LTCR(-1)
0.370154
(0.99117)
[ 0.37345]
-0.530710 -0.260602
0.073387
0.005119
0.766013
(0.11947) (0.15229) (0.06861) (0.02492) (0.03045)
[-4.44231] [-1.71120] [ 1.06964] [ 0.20540] [ 25.1558]
1.446575 -0.018860
(1.49442) (0.15325)
[ 0.96798] [-0.12306]
LVENTA(-1)
-0.195932
(0.06319)
[-3.10065]
0.001881
0.003222
0.008518 -0.000602
0.000307
(0.00762) (0.00971) (0.00437) (0.00159) (0.00194)
[ 0.24691] [ 0.33188] [ 1.94737] [-0.37912] [ 0.15818]
0.168114 -0.016948
(0.09527) (0.00977)
[ 1.76452] [-1.73463]
LRINFMI(-1)
0.617148
(0.23405)
[ 2.63683]
-0.233474 -0.185276
0.029230 -0.050898 -0.049891
(0.02821) (0.03596) (0.01620) (0.00588) (0.00719)
[-8.27620] [-5.15208] [ 1.80420] [-8.64922] [-6.93850]
1.187417
1.023447
(0.35289) (0.03619)
[ 3.36488] [ 28.2809]
C
-0.956059
(4.75025)
[-0.20126]
3.429912
2.497264 -0.850513
0.266587
1.155818
(0.57256) (0.72987) (0.32881) (0.11944) (0.14594)
[ 5.99053] [ 3.42151] [-2.58661] [ 2.23206] [ 7.91994]
-8.504528
0.010786
(7.16214) (0.73448)
[-1.18743] [ 0.01468]
DIAS
0.013358
(0.02393)
[ 0.55817]
0.000108 -0.004889
0.004239
0.000228
0.000702
(0.00288) (0.00368) (0.00166) (0.00060) (0.00074)
[ 0.03740] [-1.32958] [ 2.55876] [ 0.37949] [ 0.95502]
0.015887 -0.003288
(0.03608) (0.00370)
[ 0.44030] [-0.88855]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.906002
0.897708
13.37359
0.362096
109.2362
-39.90894
0.891231
1.133954
12.12812
1.132146
0.998001
0.997824
0.194290
0.043644
5657.532
197.0655
-3.340455
-3.097732
5.410690
0.935691
0.315450
0.255048
30.40186
0.545946
5.222548
-85.89740
1.712453
1.955177
6.592978
0.632537
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.997112
0.996857
0.315724
0.055636
3913.152
169.8766
-2.854939
-2.612216
8.371077
0.992441
1.09E-21
1431.811
-24.13948
-22.19769
43
0.372190
0.316795
0.064079
0.025064
6.718840
259.1827
-4.449691
-4.206968
0.001582
0.030324
0.999953
0.999949
0.008454
0.009104
241662.4
372.6072
-6.475128
-6.232405
3.707332
1.274423
0.996694
0.996403
0.012623
0.011124
3417.217
350.1616
-6.074315
-5.831592
4.634578
0.185477
0.954616
0.950611
0.319727
0.055987
238.3861
169.1710
-2.842339
-2.599615
9.189353
0.251927
Cuadro N° 6
Estimadores del vector autorregresivo para la función de reacción del Banco Central
Instrumento de política monetaria: Log crédito bruto del Banco Central
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LCIBBCV
CICLO
LIS
LTCN
LINCIDENCIA
LVENTA
LRINFMI
LCIBBCV(-1)
1.021379
(0.07046)
[ 14.4961]
0.088222
(0.03198)
[ 2.75858]
0.039175
(0.01163)
[ 3.36896]
0.162447
(0.05932)
[ 2.73826]
0.769250
(0.44714)
[ 1.72037]
-0.226823
(0.67789)
[-0.33460]
-0.142710
(0.06925)
[-2.06082]
CICLO(-1)
0.063874
(0.20849)
[ 0.30636]
0.172349
(0.09463)
[ 1.82123]
0.094553
(0.03441)
[ 2.74794]
0.230459
(0.17555)
[ 1.31282]
-0.066803
(1.32311)
[-0.05049]
0.285298
(2.00592)
[ 0.14223]
-0.053649
(0.20491)
[-0.26182]
LIS(-1)
0.028778
(0.04306)
[ 0.66829]
0.004527
(0.01955)
[ 0.23162]
0.960853
(0.00711)
[ 135.201]
0.043520
(0.03626)
[ 1.20029]
0.619141
(0.27328)
[ 2.26560]
0.698093
(0.41431)
[ 1.68497]
-0.099797
(0.04232)
[-2.35800]
LTCN(-1)
-0.060427
(0.09852)
[-0.61332]
-0.111048
(0.04472)
[-2.48319]
0.013481
(0.01626)
[ 0.82910]
0.782383
(0.08296)
[ 9.43139]
-0.699075
(0.62525)
[-1.11808]
-0.867436
(0.94791)
[-0.91510]
0.261248
(0.09683)
[ 2.69794]
LINCIDENCIA(-1)
0.015343
(0.01449)
[ 1.05905]
0.004365
(0.00658)
[ 0.66381]
0.000147
(0.00239)
[ 0.06155]
0.006980
(0.01220)
[ 0.57219]
0.155597
(0.09194)
[ 1.69235]
0.141505
(0.13939)
[ 1.01519]
0.019212
(0.01424)
[ 1.34924]
LVENTA(-1)
0.004767
(0.00988)
[ 0.48258]
0.007769
(0.00448)
[ 1.73302]
-0.001001
(0.00163)
[-0.61395]
0.004055
(0.00832)
[ 0.48759]
-0.194991
(0.06268)
[-3.11081]
0.164389
(0.09503)
[ 1.72988]
-0.017441
(0.00971)
[-1.79668]
LRINFMI(-1)
-0.150868
(0.03041)
[-4.96075]
0.021329
(0.01380)
[ 1.54511]
-0.061208
(0.00502)
[-12.1950]
-0.160476
(0.02561)
[-6.26701]
0.621969
(0.19300)
[ 3.22263]
1.055406
(0.29260)
[ 3.60700]
1.016287
(0.02989)
[ 34.0009]
C
1.156097
(0.26487)
[ 4.36482]
-0.465368
(0.12022)
[-3.87090]
0.446747
(0.04371)
[ 10.2201]
0.923977
(0.22301)
[ 4.14317]
-0.810359
(1.68088)
[-0.48210]
-3.800940
(2.54831)
[-1.49155]
0.158309
(0.26032)
[ 0.60814]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.996902
0.996691
0.331617
0.056741
4734.680
165.1362
-2.831283
-2.636001
8.384651
0.986442
0.329889
0.284348
0.068320
0.025755
7.243710
252.8138
-4.411060
-4.215778
0.001678
0.030444
0.999940
0.999936
0.009032
0.009364
244005.5
365.1132
-6.434472
-6.239190
6.453516
1.166925
0.997525
0.997357
0.235092
0.047775
5930.901
184.2284
-3.175287
-2.980006
5.423958
0.929290
0.905137
0.898689
13.35532
0.360088
140.3958
-39.97453
0.864406
1.059687
12.13907
1.131309
0.308800
0.261825
30.69621
0.545913
6.573736
-86.16298
1.696630
1.891912
6.593317
0.635395
0.954221
0.951110
0.320326
0.055767
306.7048
167.0589
-2.865926
-2.670645
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
1.27E-17
1056.808
-18.03257
-16.66560
44
Cuadro N° 7
Estimadores del vector autorregresivo para el mecanismo monetario
Instrumento de política monetaria: Log M1 nominal
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LM1N
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.150619
(0.09196)
[ 1.63787]
0.008276 -0.015497
0.009497
0.004407
0.000712
(0.01228) (0.01491) (0.03439) (0.00651) (0.00252)
[ 0.67402] [-1.03931] [ 0.27620] [ 0.67700] [ 0.28247]
0.145769
0.010401
(0.13774) (0.01394)
[ 1.05829] [ 0.74608]
LTCN(-1)
-0.514254
(0.46451)
[-1.10708]
0.844819 -0.061226
0.077163 -0.016088
0.046202
(0.06202) (0.07532) (0.17369) (0.03288) (0.01272)
[ 13.6217] [-0.81289] [ 0.44426] [-0.48929] [ 3.63093]
0.099593 -0.076573
(0.69575) (0.07042)
[ 0.14314] [-1.08742]
LM1N(-1)
-0.150830
(0.31334)
[-0.48136]
-0.045082
0.887061 -0.078735
0.035915 -6.60E-05
(0.04184) (0.05081) (0.11716) (0.02218) (0.00858)
[-1.07759] [ 17.4597] [-0.67202] [ 1.61923] [-0.00769]
0.825027 -0.090086
(0.46932) (0.04750)
[ 1.75791] [-1.89654]
LIB(-1)
0.409581
(0.15823)
[ 2.58847]
0.067426
0.035194
0.943573
0.016894
0.008364
(0.02113) (0.02566) (0.05917) (0.01120) (0.00433)
[ 3.19150] [ 1.37173] [ 15.9480] [ 1.50832] [ 1.92969]
-0.529735
0.079696
(0.23700) (0.02399)
[-2.23514] [ 3.32245]
CICLO(-1)
-0.053597
(1.29472)
[-0.04140]
0.290635 -0.054864 -0.183481
0.190551
0.116548
(0.17287) (0.20993) (0.48412) (0.09165) (0.03547)
[ 1.68127] [-0.26134] [-0.37900] [ 2.07914] [ 3.28614]
0.447640 -0.299298
(1.93925) (0.19627)
[ 0.23083] [-1.52492]
LIS(-1)
1.020605
(0.51287)
[ 1.99000]
0.131051
0.149831
0.052535 -0.040915
0.962187
(0.06848) (0.08316) (0.19177) (0.03630) (0.01405)
[ 1.91382] [ 1.80176] [ 0.27395] [-1.12701] [ 68.4876]
-0.726478
0.095698
(0.76818) (0.07775)
[-0.94572] [ 1.23089]
LVENTA(-1)
-0.192389
(0.06211)
[-3.09733]
0.003975 -0.021636 -0.002506
0.008157 -0.001067
(0.00829) (0.01007) (0.02323) (0.00440) (0.00170)
[ 0.47934] [-2.14829] [-0.10788] [ 1.85518] [-0.62733]
0.163767 -0.016089
(0.09304) (0.00942)
[ 1.76026] [-1.70866]
LRINFMI(-1)
0.340609
(0.23430)
[ 1.45373]
-0.198800
0.016242 -0.068908
0.004422 -0.065465
(0.03128) (0.03799) (0.08761) (0.01659) (0.00642)
[-6.35494] [ 0.42752] [-0.78654] [ 0.26661] [-10.1998]
1.347967
0.950941
(0.35094) (0.03552)
[ 3.84106] [ 26.7734]
C
3.216439
(2.74833)
[ 1.17032]
1.804419
0.948488
1.387212 -0.535495
0.549920
(0.36695) (0.44563) (1.02764) (0.19454) (0.07529)
[ 4.91738] [ 2.12844] [ 1.34990] [-2.75256] [ 7.30445]
-12.22337
0.934008
(4.11648) (0.41663)
[-2.96938] [ 2.24183]
DIAS
0.017943
(0.02366)
[ 0.75839]
0.001065 -0.002629 -0.002010
0.004852
0.000349
(0.00316) (0.00384) (0.00885) (0.00167) (0.00065)
[ 0.33705] [-0.68519] [-0.22719] [ 2.89689] [ 0.53812]
0.012028 -0.002735
(0.03544) (0.00359)
[ 0.33943] [-0.76257]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.908807
0.900681
12.83860
0.356532
111.8377
-37.78455
0.860983
1.105085
12.13907
1.131309
0.997591
0.997376
0.228869
0.047603
4646.654
185.7174
-3.166080
-2.921978
5.423958
0.929290
0.351440
0.293648
28.80255
0.534017
6.081075
-82.62899
1.668991
1.913093
6.593317
0.635395
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.997576
0.997360
0.337536
0.057810
4618.299
164.1544
-2.777556
-2.533454
14.10258
1.125103
3.41E-19
1100.042
-18.37913
-16.42631
45
0.977772
0.975792
1.794999
0.133313
493.6557
71.40899
-1.106468
-0.862367
7.832952
0.856820
0.369022
0.312797
0.064330
0.025238
6.563226
256.1534
-4.435196
-4.191094
0.001678
0.030444
0.999936
0.999930
0.009634
0.009767
174472.5
361.5336
-6.333939
-6.089837
6.453516
1.166925
0.957835
0.954078
0.295037
0.054048
254.9281
171.6232
-2.912129
-2.668027
9.191311
0.252212
Cuadro N° 8
Estimadores del vector autorregresivo para el mecanismo crediticio
Instrumento de política monetaria: Log M1 nominal
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LM1N
LCIR
CICLO
LIS
LRINFMI LVENTA
LINCIDENCIA(-1)
0.173697
(0.09350)
[ 1.85773]
0.016143 -0.012700
0.011491 0.005702
0.001931
(0.01210) (0.01495) (0.01392) (0.00654) (0.00239)
[ 1.33402] [-0.84955] [ 0.82566] [ 0.87201] [ 0.80870]
0.014058
0.107434
(0.01410) (0.14014)
[ 0.99669] [ 0.76662]
LTCN(-1)
0.431501
(0.40094)
[ 1.07623]
0.901534
0.000241 -0.145605
0.014568
0.047312
(0.05189) (0.06410) (0.05968) (0.02804) (0.01024)
[ 17.3737] [ 0.00375] [-2.43986] [ 0.51953] [ 4.62053]
0.127734 -0.917135
(0.06048) (0.60094)
[ 2.11199] [-1.52616]
LM1N(-1)
0.309069
(0.36595)
[ 0.84456]
-0.098719
0.900704 -0.022961
0.043968 -0.014464
(0.04736) (0.05851) (0.05447) (0.02559) (0.00935)
[-2.08433] [ 15.3939] [-0.42154] [ 1.71789] [-1.54758]
0.025907
(0.05520)
[ 0.46931]
LCIR(-1)
-0.704968
(0.52261)
[-1.34895]
0.233982
(0.06764)
[ 3.45937]
0.876814
0.000465
0.049982
(0.07779) (0.03655) (0.01335)
[ 11.2720] [ 0.01272] [ 3.74488]
-0.208903
0.181575
(0.07883) (0.78330)
[-2.64992] [ 0.23181]
CICLO(-1)
0.955401
(1.30530)
[ 0.73194]
0.329092
0.006302
0.243182
0.221396
0.113677
(0.16894) (0.20870) (0.19429) (0.09129) (0.03334)
[ 1.94803] [ 0.03020] [ 1.25166] [ 2.42518] [ 3.41006]
-0.076811 -0.591078
(0.19690) (1.95643)
[-0.39010] [-0.30212]
LIS(-1)
-0.074248
(0.61321)
[-0.12108]
0.211360 0.107873
0.102271 -0.064085
0.987747
(0.07936) (0.09804) (0.09127) (0.04289) (0.01566)
[ 2.66320] [ 1.10026] [ 1.12050] [-1.49429] [ 63.0724]
-0.170729
0.146042
(0.09250) (0.91910)
[-1.84571] [ 0.15890]
LRINFMI(-1)
0.307549
(0.33666)
[ 0.91354]
-0.023265
0.049603 -0.051215
0.018333 -0.032854
(0.04357) (0.05383) (0.05011) (0.02355) (0.00860)
[-0.53395] [ 0.92153] [-1.02207] [ 0.77862] [-3.82125]
0.907422
1.013190
(0.05078) (0.50460)
[ 17.8683] [ 2.00793]
LVENTA(-1)
-0.196738
(0.06354)
[-3.09633]
0.002521 -0.022158
0.005320
(0.00822) (0.01016) (0.00946)
[ 0.30656] [-2.18109] [ 0.56255]
0.007915 -0.001292
(0.00444) (0.00162)
[ 1.78117] [-0.79621]
-0.016784
0.170932
(0.00958) (0.09524)
[-1.75111] [ 1.79485]
C
4.974032
(4.49180)
[ 1.10736]
-0.407562
0.599155
1.342506 -0.674110
0.125770
(0.58134) (0.71818) (0.66858) (0.31415) (0.11472)
[-0.70107] [ 0.83427] [ 2.00799] [-2.14582] [ 1.09637]
1.788581 -9.278622
(0.67758) (6.73249)
[ 2.63968] [-1.37819]
DIAS
0.017530
(0.02429)
[ 0.72158]
-0.000657 -0.002995 -0.003192
0.004695
3.61E-05
(0.00314) (0.00388) (0.00362) (0.00170) (0.00062)
[-0.20900] [-0.77099] [-0.88257] [ 2.76315] [ 0.05824]
-0.002476
0.016012
(0.00366) (0.03641)
[-0.67570] [ 0.43972]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.904478
0.895966
13.44800
0.364895
106.2612
-40.35834
0.907357
1.151459
12.13907
1.131309
0.997629
0.997417
0.225259
0.047226
4721.290
186.5997
-3.181976
-2.937875
5.423958
0.929290
0.956267
0.952370
0.306007
0.055043
245.3866
169.5969
-2.875620
-2.631519
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.009445
(0.08356)
[ 0.11303]
0.997531
0.997311
0.343781
0.058342
4534.203
163.1369
-2.759224
-2.515122
14.10258
1.125103
3.75E-20
1222.518
-20.58591
-18.63310
46
0.970900
0.968306
0.297938
0.054313
374.4149
171.0801
-2.902343
-2.658241
4.308007
0.305082
0.354811
0.297318
0.065779
0.025520
6.171463
254.9172
-4.412922
-4.168821
0.001678
0.030444
0.999941
0.999936
0.008771
0.009319
191634.4
366.7404
-6.427756
-6.183654
6.453516
1.166925
0.500041
(0.54850)
[ 0.91165]
0.319722
0.259103
30.21116
0.546919
5.274297
-85.27898
1.716738
1.960840
6.593317
0.635395
Cuadro N° 9
Estimadores del vector autorregresivo para el mecanismo cambiario
Instrumento de política monetaria: Log M1 nominal
Muestra: 1991:01 2000:12
Observaciones incluidas: 112
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LM1N
CICLO
LIPCS
LTCR
LVENTA LRINFMI
LINCIDENCIA(-1)
0.187423
(0.09248)
[ 2.02657]
0.014099 -0.013555
0.003722
0.001221
0.000878
(0.01233) (0.01468) (0.00638) (0.00233) (0.00304)
[ 1.14311] [-0.92356] [ 0.58340] [ 0.52399] [ 0.28888]
0.103878
0.014845
(0.13775) (0.01435)
[ 0.75409] [ 1.03434]
LTCN(-1)
-0.175336
(0.55616)
[-0.31526]
1.081049 -0.024925 -0.036848
0.036924
0.090976
(0.07417) (0.08826) (0.03837) (0.01402) (0.01828)
[ 14.5752] [-0.28240] [-0.96034] [ 2.63443] [ 4.97668]
-0.993314
0.116410
(0.82841) (0.08631)
[-1.19907] [ 1.34872]
LM1N(-1)
-0.034809
(0.32263)
[-0.10789]
0.015824
0.896211
0.028750 -0.004936
0.023329
(0.04303) (0.05120) (0.02226) (0.00813) (0.01060)
[ 0.36778] [ 17.5038] [ 1.29167] [-0.60704] [ 2.19987]
0.500262 -0.039051
(0.48056) (0.05007)
[ 1.04100] [-0.77995]
CICLO(-1)
0.483269
(1.30273)
[ 0.37097]
0.464334 -0.004082
0.202377
0.117116
0.058497
(0.17373) (0.20674) (0.08988) (0.03283) (0.04282)
[ 2.67269] [-0.01974] [ 2.25174] [ 3.56738] [ 1.36613]
-0.514142 -0.135249
(1.94041) (0.20217)
[-0.26497] [-0.66899]
LIPCS(-1)
0.914017
(0.68288)
[ 1.33848]
-0.101777
0.133973
0.003958
0.983899 -0.109669
(0.09107) (0.10837) (0.04711) (0.01721) (0.02245)
[-1.11758] [ 1.23624] [ 0.08400] [ 57.1735] [-4.88604]
0.188542 -0.070424
(1.01715) (0.10598)
[ 0.18536] [-0.66453]
LTCR(-1)
1.122171
(0.97290)
[ 1.15342]
-0.244282
0.103449
0.092503
0.033342
0.807171
(0.12975) (0.15440) (0.06712) (0.02452) (0.03198)
[-1.88275] [ 0.67001] [ 1.37815] [ 1.35989] [ 25.2412]
0.208750 -0.106066
(1.44914) (0.15098)
[ 0.14405] [-0.70249]
LVENTA(-1)
-0.195897
(0.06378)
[-3.07125]
0.002004 -0.021989
0.008631 -0.000615
0.000404
(0.00851) (0.01012) (0.00440) (0.00161) (0.00210)
[ 0.23558] [-2.17230] [ 1.96136] [-0.38246] [ 0.19293]
0.169733 -0.017115
(0.09501) (0.00990)
[ 1.78655] [-1.72906]
LRINFMI(-1)
0.769314
(0.22860)
[ 3.36534]
-0.174863
0.050891
0.033765 -0.045269 -0.040995
(0.03049) (0.03628) (0.01577) (0.00576) (0.00751)
[-5.73580] [ 1.40279] [ 2.14092] [-7.85800] [-5.45596]
0.946923
1.004831
(0.34050) (0.03548)
[ 2.78099] [ 28.3240]
C
-3.353422
(4.53994)
[-0.73865]
2.280545
0.557755 -1.152206
0.206097
0.819616
(0.60545) (0.72048) (0.31321) (0.11441) (0.14922)
[ 3.76669] [ 0.77414] [-3.67867] [ 1.80139] [ 5.49256]
-8.157044
0.638828
(6.76224) (0.70455)
[-1.20626] [ 0.90671]
DIAS
0.014408
(0.02415)
[ 0.59663]
0.000638 -0.003138
0.004398
0.000252
0.000873
(0.00322) (0.00383) (0.00167) (0.00061) (0.00079)
[ 0.19809] [-0.81882] [ 2.63974] [ 0.41329] [ 1.09922]
0.016140 -0.003602
(0.03597) (0.00375)
[ 0.44870] [-0.96123]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.904256
0.895808
13.62193
0.365443
107.0380
-40.93931
0.909631
1.152354
12.12812
1.132146
0.997507
0.997287
0.242268
0.048736
4534.886
184.7067
-3.119762
-2.877039
5.410690
0.935691
0.319505
0.259461
30.22178
0.544327
5.321203
-85.56469
1.706512
1.949235
6.592978
0.632537
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.997587
0.997374
0.343073
0.057995
4685.427
165.2244
-2.771864
-2.529141
14.08722
1.131754
2.60E-21
1382.891
-23.26592
-21.32413
47
0.364771
0.308722
0.064836
0.025212
6.508008
258.5248
-4.437943
-4.195220
0.001582
0.030324
0.999952
0.999948
0.008651
0.009209
236169.0
371.3196
-6.452135
-6.209412
3.707332
1.274423
0.996146
0.995806
0.014717
0.012012
2929.364
341.5661
-5.920824
-5.678101
4.634578
0.185477
0.953432
0.949323
0.328069
0.056713
232.0362
167.7286
-2.816582
-2.573859
9.189353
0.251927
Cuadro N° 10
Estimadores del vector autorregresivo para la función de reacción del Banco Central
Instrumento de política monetaria: Log M1 nominal
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LM1N
CICLO
LIS
LTCN
LINCIDENCIA
LVENTA
LRINFMI
LM1N(-1)
0.904855
(0.04935)
[ 18.3344]
0.043089
(0.02233)
[ 1.92940]
0.003945
(0.00840)
[ 0.46992]
-0.012357
(0.04213)
[-0.29332]
0.045389
(0.31105)
[ 0.14592]
0.563363
(0.46191)
[ 1.21963]
-0.050513
(0.04821)
[-1.04770]
CICLO(-1)
0.009506
(0.20505)
[ 0.04636]
0.221948
(0.09279)
[ 2.39202]
0.131926
(0.03488)
[ 3.78230]
0.414454
(0.17504)
[ 2.36775]
0.699481
(1.29234)
[ 0.54125]
-0.523489
(1.91915)
[-0.27277]
-0.153272
(0.20031)
[-0.76516]
LIS(-1)
0.098724
(0.07522)
[ 1.31243]
-0.061056
(0.03404)
[-1.79374]
0.950740
(0.01280)
[ 74.3027]
0.037520
(0.06421)
[ 0.58430]
0.460690
(0.47409)
[ 0.97174]
0.023010
(0.70403)
[ 0.03268]
-0.017723
(0.07348)
[-0.24118]
LTCN(-1)
0.004317
(0.05916)
[ 0.07298]
0.012461
(0.02677)
[ 0.46550]
0.061315
(0.01006)
[ 6.09335]
0.967482
(0.05050)
[ 19.1587]
0.225395
(0.37283)
[ 0.60455]
-0.873833
(0.55366)
[-1.57828]
0.070315
(0.05779)
[ 1.21674]
LINCIDENCIA(-1)
-0.012489
(0.01481)
[-0.84329]
0.005186
(0.00670)
[ 0.77381]
0.001321
(0.00252)
[ 0.52419]
0.013375
(0.01264)
[ 1.05794]
0.180345
(0.09334)
[ 1.93214]
0.103488
(0.13861)
[ 0.74661]
0.016862
(0.01447)
[ 1.16551]
LVENTA(-1)
-0.021918
(0.01008)
[-2.17358]
0.007567
(0.00456)
[ 1.65824]
-0.001207
(0.00172)
[-0.70357]
0.002981
(0.00861)
[ 0.34631]
-0.199282
(0.06355)
[-3.13559]
0.170060
(0.09438)
[ 1.80186]
-0.016967
(0.00985)
[-1.72233]
LRINFMI(-1)
0.042954
(0.03181)
[ 1.35050]
0.020904
(0.01439)
[ 1.45238]
-0.058533
(0.00541)
[-10.8188]
-0.143972
(0.02715)
[-5.30256]
0.680534
(0.20046)
[ 3.39485]
0.929407
(0.29769)
[ 3.12210]
1.013358
(0.03107)
[ 32.6137]
C
0.612462
(0.39003)
[ 1.57032]
-0.584521
(0.17649)
[-3.31194]
0.487937
(0.06634)
[ 7.35460]
1.272692
(0.33294)
[ 3.82254]
0.197188
(2.45815)
[ 0.08022]
-7.671270
(3.65039)
[-2.10149]
0.232173
(0.38102)
[ 0.60935]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.997517
0.997348
0.345808
0.057943
5910.187
162.8106
-2.789380
-2.594099
14.10258
1.125103
0.305482
0.258282
0.070809
0.026219
6.472039
250.8283
-4.375284
-4.180003
0.001678
0.030444
0.999933
0.999929
0.010006
0.009856
220256.3
359.4304
-6.332079
-6.136798
6.453516
1.166925
0.997347
0.997167
0.251995
0.049463
5532.078
180.3749
-3.105853
-2.910572
5.423958
0.929290
0.902431
0.895800
13.73624
0.365187
136.0944
-41.53535
0.892529
1.087810
12.13907
1.131309
0.317899
0.271543
30.29211
0.542308
6.857724
-85.42748
1.683378
1.878660
6.593317
0.635395
0.952836
0.949631
0.330017
0.056604
297.2663
165.4048
-2.836122
-2.640840
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
2.69E-17
1014.989
-17.27908
-15.91211
48
Cuadro N° 11
Estimadores del vector autorregresivo para el mecanismo monetario
Instrumento de política monetaria: Log dinero base
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LDBASE
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.137126
(0.08959)
[ 1.53067]
0.006976 -0.019206
0.004535
0.005934
0.000762
(0.01218) (0.02186) (0.03391) (0.00653) (0.00249)
[ 0.57272] [-0.87866] [ 0.13375] [ 0.90821] [ 0.30561]
0.189143
0.006819
(0.13659) (0.01406)
[ 1.38479] [ 0.48485]
LTCN(-1)
-0.701315
(0.43411)
[-1.61552]
0.894806 -0.246451
0.060147 -0.036863
0.048313
(0.05902) (0.10592) (0.16430) (0.03166) (0.01209)
[ 15.1609] [-2.32680] [ 0.36609] [-1.16424] [ 3.99740]
-0.056428 -0.014824
(0.66186) (0.06815)
[-0.08526] [-0.21753]
LDBASE(-1)
-0.525159
(0.26823)
[-1.95787]
0.037036
(0.03647)
[ 1.01557]
0.747391 -0.126425
0.005391
0.003787
(0.06545) (0.10152) (0.01956) (0.00747)
[ 11.4201] [-1.24538] [ 0.27554] [ 0.50712]
0.712269
0.004138
(0.40895) (0.04211)
[ 1.74169] [ 0.09828]
LIB(-1)
0.320904
(0.15490)
[ 2.07174]
0.066762
0.036772
0.916958
0.022071
0.008861
(0.02106) (0.03779) (0.05862) (0.01130) (0.00431)
[ 3.17021] [ 0.97298] [ 15.6417] [ 1.95362] [ 2.05464]
-0.332435
0.069063
(0.23616) (0.02432)
[-1.40767] [ 2.84025]
CICLO(-1)
0.070290
(1.25838)
[ 0.05586]
0.241703
0.038585 -0.184262
0.214071
0.114823
(0.17109) (0.30703) (0.47625) (0.09178) (0.03503)
[ 1.41277] [ 0.12567] [-0.38690] [ 2.33241] [ 3.27745]
0.727204 -0.366118
(1.91857) (0.19754)
[ 0.37904] [-1.85337]
LIS(-1)
1.527142
(0.46144)
[ 3.30953]
0.020151
0.400765
0.117235
0.000254
0.956977
(0.06274) (0.11259) (0.17464) (0.03366) (0.01285)
[ 0.32121] [ 3.55964] [ 0.67130] [ 0.00755] [ 74.4914]
-0.576345 -0.031443
(0.70353) (0.07244)
[-0.81922] [-0.43408]
LVENTA(-1)
-0.189655
(0.06102)
[-3.10795]
0.004089 -0.031752 -0.001614
0.007940 -0.001081
(0.00830) (0.01489) (0.02309) (0.00445) (0.00170)
[ 0.49285] [-2.13260] [-0.06989] [ 1.78394] [-0.63616]
0.156645 -0.015608
(0.09304) (0.00958)
[ 1.68369] [-1.62938]
LRINFMI(-1)
0.623535
(0.27401)
[ 2.27556]
-0.223064
0.113020 -0.004080
0.004177 -0.067594
(0.03725) (0.06686) (0.10370) (0.01999) (0.00763)
[-5.98765] [ 1.69049] [-0.03934] [ 0.20899] [-8.86045]
1.012245
0.941650
(0.41777) (0.04301)
[ 2.42297] [ 21.8912]
C
4.293455
(2.00542)
[ 2.14093]
1.347524
1.359023
1.356435 -0.311592 0.534266
(0.27265) (0.48930) (0.75898) (0.14627) (0.05583)
[ 4.94231] [ 2.77748] [ 1.78719] [-2.13029] [ 9.56909]
-9.442140
0.301493
(3.05754) (0.31481)
[-3.08815] [ 0.95769]
DIAS
0.018637
(0.02325)
[ 0.80152]
0.001023
0.000819 -0.001837
0.004840
0.000344
(0.00316) (0.00567) (0.00880) (0.00170) (0.00065)
[ 0.32372] [ 0.14434] [-0.20876] [ 2.85382] [ 0.53126]
0.011003 -0.002728
(0.03545) (0.00365)
[ 0.31037] [-0.74739]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.911940
0.904093
12.39753
0.350354
116.2158
-35.84433
0.826024
1.070126
12.13907
1.131309
0.997588
0.997373
0.229160
0.047633
4640.736
185.6469
-3.164808
-2.920707
5.423958
0.929290
0.351086
0.293262
28.81826
0.534162
6.071639
-82.65926
1.669536
1.913638
6.593317
0.635395
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.993877
0.993331
0.738033
0.085482
1821.594
120.7358
-1.995240
-1.751138
13.78035
1.046795
7.99E-19
1052.695
-17.52603
-15.57322
49
0.978011
0.976051
1.775757
0.132596
499.1267
72.00717
-1.117246
-0.873144
7.832952
0.856820
0.353129
0.295487
0.065951
0.025553
6.126239
254.7727
-4.410319
-4.166217
0.001678
0.030444
0.999936
0.999930
0.009609
0.009754
174916.6
361.6747
-6.336481
-6.092379
6.453516
1.166925
0.956338
0.952447
0.305514
0.054999
245.8004
169.6864
-2.877232
-2.633130
9.191311
0.252212
Cuadro N° 12
Estimadores del vector autorregresivo para el mecanismo crediticio
Instrumento de política monetaria: Log dinero base
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LDBASE
LCIR
CICLO
LIS
LVENTA
LINCIDENCIA(-1)
0.167038
(0.09060)
[ 1.84364]
0.010330 -0.017059
0.007682
(0.01217) (0.02170) (0.01353)
[ 0.84897] [-0.78618] [ 0.56778]
LTCN(-1)
-0.272465
(0.41852)
[-0.65102]
0.926053 -0.223201 -0.201879 -0.021258
(0.05621) (0.10023) (0.06250) (0.03022)
[ 16.4763] [-2.22678] [-3.23003] [-0.70333]
0.045719
(0.01091)
[ 4.19011]
0.137365 -0.485307
(0.06434) (0.63108)
[ 2.13490] [-0.76901]
LDBASE(-1)
-0.642190
(0.29180)
[-2.20077]
-0.035320
0.712540 -0.082599 -0.014161 -0.011397
(0.03919) (0.06989) (0.04358) (0.02107) (0.00761)
[-0.90131] [ 10.1957] [-1.89547] [-0.67201] [-1.49817]
0.028552
0.846242
(0.04486) (0.44000)
[ 0.63644] [ 1.92327]
LCIR(-1)
-0.044675
(0.47653)
[-0.09375]
0.183092
0.080801
0.914480
0.043023
0.046667
(0.06400) (0.11413) (0.07116) (0.03441) (0.01242)
[ 2.86100] [ 0.70799] [ 12.8504] [ 1.25017] [ 3.75629]
-0.208380 -0.004762
(0.07326) (0.71855)
[-2.84434] [-0.00663]
CICLO(-1)
0.865802
(1.27346)
[ 0.67988]
0.271606
0.069182
0.203174
0.236294
0.103026
(0.17102) (0.30499) (0.19017) (0.09197) (0.03320)
[ 1.58816] [ 0.22683] [ 1.06835] [ 2.56936] [ 3.10316]
-0.054819 -0.060916
(0.19578) (1.92022)
[-0.28000] [-0.03172]
LIS(-1)
1.433913
(0.56164)
[ 2.55310]
0.124855
0.445506
0.204416
0.023577
0.985302
(0.07543) (0.13451) (0.08387) (0.04056) (0.01464)
[ 1.65535] [ 3.31204] [ 2.43721] [ 0.58128] [ 67.2907]
-0.179722 -0.512692
(0.08635) (0.84688)
[-2.08143] [-0.60539]
LRINFMI(-1)
0.944402
(0.34600)
[ 2.72952]
-0.049129
0.197655 -0.002303
0.051926 -0.032049
(0.04647) (0.08287) (0.05167) (0.02499) (0.00902)
[-1.05733] [ 2.38525] [-0.04457] [ 2.07812] [-3.55289]
0.899971
0.651411
(0.05319) (0.52172)
[ 16.9190] [ 1.24858]
LVENTA(-1)
-0.194764
(0.06226)
[-3.12808]
0.003459 -0.032144
0.006024
0.007692 -0.001114
(0.00836) (0.01491) (0.00930) (0.00450) (0.00162)
[ 0.41373] [-2.15557] [ 0.64787] [ 1.71073] [-0.68621]
-0.017156
0.161823
(0.00957) (0.09389)
[-1.79226] [ 1.72363]
C
3.664406
(4.41645)
[ 0.82972]
-0.375625
0.575822
1.230405 -0.736369
0.120450
(0.59311) (1.05773) (0.65954) (0.31895) (0.11514)
[-0.63332] [ 0.54439] [ 1.86555] [-2.30876] [ 1.04610]
1.811185 -8.368039
(0.67898) (6.65947)
[ 2.66751] [-1.25656]
DIAS
0.015984
(0.02376)
[ 0.67272]
-0.000217
0.000207 -0.003106
0.004492
9.92E-05
(0.00319) (0.00569) (0.00355) (0.00172) (0.00062)
[-0.06807] [ 0.03643] [-0.87531] [ 2.61801] [ 0.16013]
-0.002587
0.013933
(0.00365) (0.03583)
[-0.70832] [ 0.38890]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.908206
0.900026
12.92325
0.357705
111.0316
-38.14929
0.867555
1.111657
12.13907
1.131309
0.997546
0.997328
0.233074
0.048038
4562.614
184.7069
-3.147872
-2.903771
5.423958
0.929290
0.956347
0.952457
0.305449
0.054993
245.8551
169.6982
-2.877444
-2.633343
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.993850
0.993302
0.741272
0.085670
1813.586
120.4928
-1.990861
-1.746759
13.78035
1.046795
8.96E-20
1174.148
-19.71439
-17.76157
50
0.971850
0.969341
0.288210
0.053419
387.4316
172.9225
-2.935540
-2.691438
4.308007
0.305082
0.007304
0.000874
(0.00654) (0.00236)
[ 1.11632] [ 0.36996]
LRINFMI
0.338915
0.280006
0.067400
0.025833
5.753226
253.5664
-4.388583
-4.144481
0.001678
0.030444
0.999941
0.999936
0.008784
0.009326
191355.5
366.6596
-6.426299
-6.182197
6.453516
1.166925
0.016220
0.158917
(0.01393) (0.13662)
[ 1.16446] [ 1.16323]
0.338356
0.279397
29.38364
0.539377
5.738885
-83.73756
1.688965
1.933067
6.593317
0.635395
Cuadro N° 13
Estimadores del vector autorregresivo para el mecanismo cambiario
Instrumento de política monetaria: Log dinero base
Muestra: 1991:01 2000:12
Observaciones incluidas: 112
Errores estándar en ( ) y estadísticos t en [ ]
LINCIDENCIA
LTCN
LDBASE
CICLO
LIPCS
LTCR
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.174514
(0.08906)
[ 1.95961]
0.014643 -0.020201
0.005316
0.000985
0.002071
(0.01218) (0.02173) (0.00634) (0.00231) (0.00307)
[ 1.20197] [-0.92960] [ 0.83861] [ 0.42730] [ 0.67473]
0.144481
0.012407
(0.13338) (0.01418)
[ 1.08324] [ 0.87508]
LTCN(-1)
-0.393057
(0.48909)
[-0.80364]
1.063501 -0.076431 -0.055486
0.040948
0.073645
(0.06691) (0.11934) (0.03482) (0.01266) (0.01685)
[ 15.8954] [-0.64043] [-1.59363] [ 3.23354] [ 4.36936]
-1.036069
0.135749
(0.73252) (0.07787)
[-1.41439] [ 1.74336]
LDBASE(-1)
-0.640351
(0.27824)
[-2.30146]
-0.011948
0.715533
0.012736 -4.04E-05
0.004591
(0.03806) (0.06789) (0.01981) (0.00720) (0.00959)
[-0.31391] [ 10.5392] [ 0.64303] [-0.00561] [ 0.47878]
0.953853 -0.032843
(0.41672) (0.04430)
[ 2.28897] [-0.74143]
CICLO(-1)
0.702917
(1.25630)
[ 0.55951]
0.479714
0.212193
0.217224
0.113751 0.072728
(0.17186) (0.30655) (0.08943) (0.03253) (0.04329)
[ 2.79135] [ 0.69220] [ 2.42892] [ 3.49703] [ 1.67987]
-0.534229 -0.149505
(1.88157) (0.20001)
[-0.28393] [-0.74749]
LIPCS(-1)
1.522380
(0.52427)
[ 2.90382]
-0.064154
0.278958
0.036605
0.976069 -0.077224
(0.07172) (0.12793) (0.03732) (0.01357) (0.01807)
[-0.89453] [ 2.18062] [ 0.98081] [ 71.9058] [-4.27433]
-0.002530 -0.098653
(0.78520) (0.08347)
[-0.00322] [-1.18196]
LTCR(-1)
0.876776
(0.84131)
[ 1.04216]
-0.225478 -0.135297
0.137208
0.026324
0.841688
(0.11509) (0.20529) (0.05989) (0.02178) (0.02899)
[-1.95918] [-0.65906] [ 2.29099] [ 1.20846] [ 29.0312]
1.210748 -0.171546
(1.26003) (0.13394)
[ 0.96089] [-1.28077]
LVENTA(-1)
-0.195591
(0.06218)
[-3.14537]
0.001952 -0.032818
0.008527 -0.000598
0.000322
(0.00851) (0.01517) (0.00443) (0.00161) (0.00214)
[ 0.22952] [-2.16285] [ 1.92638] [-0.37119] [ 0.15035]
0.167722 -0.016970
(0.09313) (0.00990)
[ 1.80088] [-1.71418]
LRINFMI(-1)
0.969867
(0.22580)
[ 4.29531]
-0.166736
0.125965
0.037244 -0.046569 -0.036290
(0.03089) (0.05510) (0.01607) (0.00585) (0.00778)
[-5.39805] [ 2.28626] [ 2.31706] [-7.96560] [-4.66377]
0.767536
1.005199
(0.33818) (0.03595)
[ 2.26963] [ 27.9627]
C
3.299127
(5.22413)
[ 0.63152]
2.455167
3.259862 -1.198517
0.191395
0.842667
(0.71464) (1.27474) (0.37189) (0.13526) (0.18003)
[ 3.43552] [ 2.55728] [-3.22276] [ 1.41498] [ 4.68069]
-16.69203
0.865800
(7.82422) (0.83171)
[-2.13338] [ 1.04099]
DIAS
0.016212
(0.02355)
[ 0.68846]
0.000635 -0.000314
0.004300
0.000262
0.000809
(0.00322) (0.00575) (0.00168) (0.00061) (0.00081)
[ 0.19726] [-0.05472] [ 2.56534] [ 0.43048] [ 0.99674]
0.012467 -0.003428
(0.03527) (0.00375)
[ 0.35348] [-0.91436]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.908972
0.900940
12.95096
0.356329
113.1707
-38.11068
0.859119
1.101842
12.12812
1.132146
0.997506
0.997286
0.242355
0.048745
4533.252
184.6866
-3.119403
-2.876680
5.410690
0.935691
0.345875
0.288158
29.05063
0.533676
5.992612
-83.35143
1.666990
1.909713
6.592978
0.632537
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
0.993795
0.993247
0.771111
0.086948
1815.098
119.8705
-1.961974
-1.719251
13.76302
1.058083
6.24E-21
1333.961
-22.39217
-20.45038
51
0.356987
0.300251
0.065631
0.025366
6.292037
257.8428
-4.425764
-4.183041
0.001582
0.030324
0.999952
0.999948
0.008682
0.009226
235318.9
371.1176
-6.448529
-6.205806
3.707332
1.274423
0.995972
0.995617
0.015380
0.012280
2802.470
339.0960
-5.876714
-5.633991
4.634578
0.185477
0.953405
0.949294
0.328256
0.056729
231.8973
167.6966
-2.816011
-2.573287
9.189353
0.251927
Cuadro N° 14
Estimadores del vector autorregresivo para la función de reacción del Banco Central
Instrumento de política monetaria: Log dinero base
Muestra: 1991:02 2000:12
Observaciones incluidas: 111
Errores estándar en ( ) y estadísticos t en [ ]
LDBASE
CICLO
LIS
LVENTA
LRINFMI
LDBASE(-1)
0.732865
(0.06333)
[ 11.5723]
-0.001905
(0.01987)
[-0.09587]
0.000335
(0.00735)
[ 0.04559]
0.010512
(0.03683)
[ 0.28540]
-0.648161
(0.26435)
[-2.45186]
0.849606
(0.39802)
[ 2.13458]
-0.024538
(0.04230)
[-0.58004]
CICLO(-1)
0.126040
(0.29205)
[ 0.43156]
0.265745
(0.09165)
[ 2.89968]
0.135868
(0.03388)
[ 4.01001]
0.400571
(0.16986)
[ 2.35826]
0.831339
(1.21911)
[ 0.68192]
-0.066889
(1.83553)
[-0.03644]
-0.201063
(0.19509)
[-1.03060]
LIS(-1)
0.393365
(0.11176)
[ 3.51979]
-0.004353
(0.03507)
[-0.12414]
0.955189
(0.01297)
[ 73.6714]
0.006734
(0.06500)
[ 0.10360]
1.462126
(0.46651)
[ 3.13418]
-0.510152
(0.70239)
[-0.72631]
-0.045178
(0.07466)
[-0.60516]
LTCN(-1)
-0.198915
(0.09346)
[-2.12826]
-0.008874
(0.02933)
[-0.30256]
0.059749
(0.01084)
[ 5.51029]
0.981170
(0.05436)
[ 18.0499]
-0.287904
(0.39014)
[-0.73794]
-0.488480
(0.58741)
[-0.83158]
0.074989
(0.06243)
[ 1.20109]
LINCIDENCIA(-1)
-0.015910
(0.02147)
[-0.74117]
0.007427
(0.00674)
[ 1.10264]
0.001540
(0.00249)
[ 0.61840]
0.013011
(0.01248)
[ 1.04217]
0.164607
(0.08960)
[ 1.83703]
0.157294
(0.13491)
[ 1.16591]
0.013485
(0.01434)
[ 0.94038]
LVENTA(-1)
-0.032363
(0.01480)
[-2.18735]
0.007249
(0.00464)
[ 1.56127]
-0.001239
(0.00172)
[-0.72180]
0.003014
(0.00861)
[ 0.35028]
-0.195844
(0.06176)
[-3.17104]
0.160796
(0.09299)
[ 1.72921]
-0.016438
(0.00988)
[-1.66315]
LRINFMI(-1)
0.152844
(0.05270)
[ 2.90003]
0.029869
(0.01654)
[ 1.80605]
-0.057938
(0.00611)
[-9.47559]
-0.150951
(0.03065)
[-4.92454]
0.975804
(0.22000)
[ 4.43544]
0.659792
(0.33124)
[ 1.99188]
1.014689
(0.03521)
[ 28.8208]
C
1.252237
(0.46446)
[ 2.69611]
-0.308569
(0.14575)
[-2.11714]
0.510798
(0.05388)
[ 9.47957]
1.146495
(0.27013)
[ 4.24421]
3.538910
(1.93879)
[ 1.82532]
-8.192647
(2.91909)
[-2.80657]
0.035086
(0.31026)
[ 0.11309]
R-squared
Adj. R-squared
Sum sq. resids
S.E. equation
F-statistic
Log likelihood
Akaike AIC
Schwarz SC
Mean dependent
S.D. dependent
0.993819
0.993399
0.745007
0.085047
2365.932
120.2138
-2.021871
-1.826589
13.78035
1.046795
0.280445
0.231543
0.073361
0.026688
5.734861
248.8628
-4.339869
-4.144588
0.001678
0.030444
0.999933
0.999929
0.010027
0.009867
219789.5
359.3127
-6.329958
-6.134676
6.453516
1.166925
0.997347
0.997167
0.252007
0.049464
5531.832
180.3724
-3.105809
-2.910527
5.423958
0.929290
0.907792
0.901526
12.98142
0.355012
144.8634
-38.39855
0.836010
1.031291
12.13907
1.131309
0.337362
0.292328
29.42777
0.534515
7.491325
-83.82085
1.654430
1.849711
6.593317
0.635395
0.952488
0.949260
0.332448
0.056812
294.9848
164.9974
-2.828782
-2.633501
9.191311
0.252212
Determinant Residual Covariance
Log Likelihood (d.f. adjusted)
Akaike Information Criteria
Schwarz Criteria
5.97E-17
970.8545
-16.48386
-15.11689
52
LTCN LINCIDENCIA
Mecanismo monetarista
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log dinero base
Respuesta de CICLO
a innovaciones en LDBASE
.004
Respuesta de LIS
a innovaciones en LDBASE
.04
.003
.04
.03
.002
Respuesta de LIB
a innovaciones en LDBASE
.06
.02
.02
.001
.00
.01
.000
-.02
.00
-.001
-.002
-.01
-.003
-.02
5
10
15
20
-.04
-.06
-.08
5
10
15
20
5
10
15
20
Mecanismo de crédito
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log dinero base
Respuesta de CICLO
a innovaciones en LDBASE
.003
Respuesta de LIS
a innovaciones en LDBASE
.02
.002
.001
Respuesta de LCIR
a innovaciones en LDBASE
.03
.01
.02
.00
.01
.000
-.01
.00
-.02
-.01
-.03
-.02
-.001
-.002
-.003
-.004
-.04
5
10
15
20
-.03
5
10
15
20
5
10
15
20
Mecanismo cambiario
Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log dinero base
Respuesta de CICLO
a innovaciones en LDBASE
.005
Respuesta de LIPCS
a innovaciones en LDBASE
.05
.004
.04
Respuesta de LTCR
a innovaciones en LDBASE
.012
.008
.003
.03
.002
.004
.001
.02
.000
.000
.01
-.001
-.004
.00
-.002
-.003
-.01
5
10
15
20
-.008
5
10
15
53
20
5
10
15
20
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural
(línea punteada: ± 2 desv. estándar del error)
Meta intermedia: Log dinero base
Respuesta de LDBASE
a innovaciones en CICLO
Respuesta de LDBASE
a innovaciones en LIS
Respuesta de LDBASE
a innovaciones en LTCN
.06
.06
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06
5
10
15
20
-.06
5
Respuesta de LDBASE
a innovaciones en LINCIDENCIA
10
15
20
5
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.04
-.04
-.04
-.06
10
15
20
20
.06
-.02
5
15
Respuesta de LDBASE
a innovaciones en LRINFMI
Respuesta de LDBASE
a innovaciones en LVENTA
.06
-.06
10
-.06
5
10
15
54
20
5
10
15
20
Referencias
Banco Central de Venezuela (1990): Compilación de leyes del Banco
Central de Venezuela. Colección Cincuentenaria.
Banco Central de Venezuela: Ley del Banco Central de Venezuela.
1992. Cuadernos BCV. Serie divulgativa institucional.
Banco Central de Venezuela (1988-1999), Informe Económico.
Bello, Omar y Miguel Dorta (2001), “Desaceleración de la inflación y
bandas cambiarias”, mimeo, Oficina de Consultoría Económica,
Banco Central de Venezuela.
Bernanke, Ben (1886), “Alternative Explanations of the MoneyIncome Correlation”, Carnegie-Rochester Conference Series on
Public Policy.
Bernanke, Ben (1995), “What do we know about how monetary
policy affects the economy?”, Federal Reserve Bank of St. Louis
Review, Vol. 77.
Bernanke, Ben y Mark Gertler (1995), “Inside the Black Box: The
Credit Channel of the Monetary Policy Transmission”, Journal of
Economic Perspectives, Vol. 9, N° 4.
Brainard, William y James Tobin (1963), “Financial Intermediaries
and the Effectiveness of Monetary Controls”, American
Economic Review.
Cabrera, Ángel y Luis Felipe Lagos (2000), “Monetary Policy in
Chile: A black box?”, Banco Central de Chile, Documentos de
Trabajo, N° 88.
55
Cecchetti, Stephen (1995), “Distinguishing Theories of Monetary
Transmission Mechanism”, Federal Reserve Bank of St. Louis
Review, Vol. 77.
Crazut, Rafael (1995), El Banco Central de Venezuela. Notas sobre su
historia y evolución, 1940-1990. Colección Banca Central y Sociedad, BCV.
Enders, Walter (1995), “Applied Econometric Time Series”, Wiley
Series in Probability and Mathematical Statistics, New York.
Guerra, José y Julio Pineda (2000), “Trayectoria de la política
cambiaria en Venezuela”. Banco Central de Venezuela, Serie
Documentos de Trabajo, N° 24.
Guerra, José, Pedro César Rodríguez y Gustavo Sánchez (1998), “Mecanismos de transmisión de la política monetaria”, Revista del
Banco Central de Venezuela, Vol. XII, N° 1.
Kamin, Steven (1996), “Real Exchange Rate and Inflation in
Exchange-Rate Based Stabilizations: An Empirical Examination”,
Board of Governors of the Federal Reserve System, International
Discussion Paper, 554.
López, Oswaldo y Omar Zambrano (2000), “Relación de corto y largo
plazo entre agregados monetarios e inflación en Venezuela: evidencia empírica”, mimeo. Departamento de Análisis Económico,
Banco Central de Venezuela.
Machado, Alfredo (1965), “Banco Central y política monetaria”. Temas del desarrollo económico de Venezuela.
Mirabal, María Josefa (1999), “Programación y política monetaria en
Venezuela, 1989-1998”. Serie Documentos de Trabajo, BCV, N° 21.
Neumann, Manfred (1995), “The aggregative structure of the new
credit view”, Federal Reserve Bank of St. Louis Review, Vol. 77.
Ley del Banco Central de Venezuela, 2000.
56
Rodríguez, Pedro César y Edgar Rojas (1999), “El papel de la estructura financiera en la transmisión de la política monetaria”. Monetaria. Vol. XXII, N°1, enero-marzo. Cemla.
Sims, Christopher (1986), “Are Forecasting Models Usable for Policy
Analysis?”, Federal Reserve Bank of Minneapolis, Quarterly
Review.
Taylor, John (1993), “Macroeconomic Policy in the World Economy:
From Econometric Design to Practical Operation”, W.W. Norton,
New York.
Taylor, John (2000), “ The Monetary Transmission Mechanism and
the Evaluation of Monetary Policy Rules”, Banco Central de Chile,
Documentos de Trabajo, N° 87.
57
Descargar