Tema 1: Antecedentes de la Teoría Atómica - 1

Anuncio
Tema 1: Antecedentes de la Teoría Atómica
-1-
BIBLIOGRAFÍA:
* “Principios de Química” P. Ander y A.J. Sonnessa
* “Química: La Ciencia Básica ”M.D. Reboiras
* “Química. Curso Universitario” B.M. Mahan y R.J. Myers
* “Química General” R.H. Petrucci, W.S. Harwood y F.G. Herring
CONTENIDOS DEL TEMA:
1.1. Introducción.
1.2. La naturaleza eléctrica de la materia.
1.3. Primeros modelos atómicos (Thomson, Rutherford).
1.4. Radiación del cuerpo negro.
1.5. El efecto fotoeléctrico.
1.6. Espectros atómicos.
1.7. El átomo de Bohr.
Repaso: campo eléctrico y magnético; fuerza, trabajo y energía; diversos tipos de fuerzas
1.1.- INTRODUCCIÓN
En esta primera parte del curso se va a describir la estructura atómica, centrándose en la
estructura electrónica de los átomos. A lo largo del primer tema se va a realizar un recorrido
histórico por las diferentes teorías atómicas, desde la teoría de Thomson hasta llegar a la
teoría para el átomo de hidrógeno de Bohr.
Experimentación
Interpretación
Recorrido histórico
por las diversas teorías atómicas:
(de Thomson a la Mecánica Cuántica)
Verificación
Síntesis
Creación de modelo
Esquema del método científico
Durante este recorrido se van a presentar
diversos
experimentos
que
influyeron
decisivamente en la propuesta y/o refutación
de los diferentes modelos atómicos para,
finalmente, desarrollar el modelo atómico de
Bohr. También se comentarán los fallos del modelo de Bohr, que dan lugar a refutar dicho
modelo y aceptar el modelo atómico actual descrito mediante la mecánica cuántica.
La teoría atómica se considera como una de las teorías más importantes de la Ciencia, de
ahí la importancia de su estudio. Esta afirmación se sustenta en dos aspectos:
* Esta teoría es capaz de describir con gran precisión una parte tan pequeña y universal de
la materia como es el átomo.
* Constituye la base para todo el conocimiento de los fenómenos químicos de la materia.
En el desarrollo histórico de la teoría de la estructura atómica se pueden destacar tres
grandes etapas:
* El descubrimiento de la naturaleza eléctrica de la materia y de la naturaleza del electrón.
* El descubrimiento de que el átomo consta de un núcleo rodeado por electrones.
* El descubrimiento de las ecuaciones de la mecánica cuántica, capaces de explicar el
comportamiento de los electrones en los átomos, que se verá en el próximo tema.
Tema 1: Antecedentes de la Teoría Atómica
-2-
1.2.- NATURALEZA ELÉCTRICA DE LA MATERIA
1.2.1.- Primeras observaciones (Faraday, 1833)
Las primeras claves sobre la naturaleza de la electricidad y de la estructura eléctrica de los
átomos puede decirse que fueron resultado de las investigaciones de Faraday sobre la
electrolisis. Sus hallazgos quedan resumidos en:
• El peso de la sustancia depositada en un electrodo es proporcional a la cantidad de
electricidad que pasa a través del electrolito.
• Los pesos de las distintas sustancias depositadas en un electrodo por el paso de una
cantidad fija de electricidad son proporcionales a los pesos equivalentes de dichas
sustancias.
De estos hallazgos se puede concluir que, si un número fijo de átomos reacciona con una
cantidad fija de electricidad, la propia
Electricidad
Sustancia
electricidad se compone de partículas. Así,
en un proceso elemental de electrodo un
nº constante de
nº constante de
partículas neutras
partículas eléctricas
átomo o molécula toma o cede un número
entero y pequeño de partículas eléctricas
(ej.: Fe2+ + 2e- → Fe0).
ELECTRÓN
(G.J. Stoney, 1874)
No fue hasta 50 años después cuando se
llegó a esta conclusión y G.J. Stoney en
1874
designa
a
estas
partículas
constituyentes de la electricidad con el nombre de electrones. Sin embargo, la evidencia
experimental firme sobre la existencia y propiedades del electrón no se encontró hasta 1897.
1.2.2.- Descubrimiento de los rayos catódicos
Una fase importante en el estudio de la estructura atómica fue la investigación de la
conducción eléctrica a través de los gases a presiones bajas, realizada principalmente por J.W.
Hittorf y W. Crookes (1860-1890) en los
denominados tubos de descarga o tubos
de Crookes, precursores de los utilizados
actualmente para la iluminación y anuncios
luminosos.
Estos
tubos
de
descarga
consisten en un tubo largo de vidrio con un
electrodo circular sellado en cada extremo
y lleno de gas (noble) en su interior; para controlar la presión del gas encerrado se conecta el
interior del tubo a una bomba de vacío mediante un tubo con llave.
Tema 1: Antecedentes de la Teoría Atómica
-3-
Los gases son normalmente aislantes eléctricos, pero cuando se someten a altos voltajes
(5000 – 10000 voltios) mediante electrodos metálicos se produce conducción eléctrica a
través de ellos. Cuando la presión del gas es del orden de 10-2 atmósferas el interior del tubo
resplandece con una luz característica del gas encerrado. Si la presión se disminuye hasta 10-6
atm., el resplandor del interior del tubo desaparece y comienzan a brillar o fluorescer las
paredes de vidrio. Estos cambios observados por la variación de presión se pueden explicar
cualitativamente de la siguiente forma, esquematizada en la figura:
Las partículas neutras del gas al aplicarlas un alto voltaje se disocian en partículas
cargadas negativamente, que irán al ánodo, y otras cargadas positivamente, que irán al cátodo.
A medida que van hacia el electrodo correspondiente las partículas cargadas adquieren una
aceleración y, por tanto,
una considerable energía
cinética (fundamentalmente
las cargadas positivamente
ya que tienen mucha mayor
Partícula
neutra
Aplicando altos voltajes: Conducen electricidad
A P ~10-2 atm.: Resplandor del gas
A P ~10-6 atm.: Fluorescencia del tubo
+
+
+
-
Disociación
Recombinación
por choque
Choque con el
cátodo
+
Partícula
neutra
+
-
+ LUZ
Emisión de
Rayos catódicos
masa). Dichas partículas
energéticas pueden chocar con partículas neutras de gas, haciendo que éstas se disocien.
También puede ocurrir que una partícula cargada choque con una de signo contrario,
dando lugar a una recombinación de la partícula neutra y una liberación de energía en forma
de luz, que es característica del gas encerrado. Estos choques serán menos probables cuanto
menor sea la presión. Así, a presiones bajas (~10-6 atm) llegarán partículas positivas al cátodo
con una gran energía cinética y chocarán contra el electrodo. Como resultado de este
“bombardeo” del cátodo se desprenden partículas, denominadas rayos catódicos, que se
alejan en línea recta hacia el otro extremo del tubo de descarga.
* Propiedades de los rayos catódicos:
• Se desplazan en línea recta hacia el ánodo, desapareciendo el
brillo del vidrio detrás del ánodo dejando una marca.
• Se desvían en presencia de campos eléctricos y/o
magnéticos, del modo como lo haría una partícula con carga
negativa. (Se identifican con los “electrones de Stoney”).
• Sus características no dependen de la
naturaleza del gas, ni del metal de los
electrodos: “Son constituyentes comunes de
la materia”
Tema 1: Antecedentes de la Teoría Atómica
-4-
* Determinación de la relación q/m de los rayos catódicos (J.J. Thomson, 1897):
r
r
↓ E ⊥ B
r
r
↑ Fe ↓ F m
Para tal propósito Thomson utilizó un
tubo de descarga modificado (ver figura),
en el que se hacía un pequeño orificio en
el ánodo, para permitir el paso de un fino
haz de rayos catódicos. Perpendicular a la
trayectoria de este fino haz se disponen un
campo eléctrico y otro magnético, a su
vez, perpendiculares entre sí.
Al pasar por el campo eléctrico desconectado (P, P´) el haz de rayos catódicos seguirá una
trayectoria rectilínea incidiendo en la pantalla en el punto O; si el campo eléctrico se conecta
el haz se desviará en forma ascendente llegando al punto O´, debido a la fuerza eléctrica , Fe:
Fe =
donde V es la tensión aplicada, d la distancia entre las placas P y P´ y q la carga de
V
⋅q
d
las partículas constituyentes de los rayos catódicos, es decir, la carga del electrón.
Según la segunda ley de Newton, también se puede expresar Fe, como: Fe = m·a .
q
d
Igualando ambas ecuaciones obtenemos:
= a· , donde q/m es la relación carga-masa de
m
V
los electrones y que podrá determinarse si se calcula a, que es la aceleración, en este caso
vertical, de los rayos catódicos entre las placas del campo eléctrico.
a ⋅t2
A partir de la expresión de una trayectoria uniformemente acelerada, y = y 0 +
, se puede
2
2· y
expresar la aceleración como: a = 2 . El desplazamiento ascendente y puede determinarse,
t
l
mediante magnitudes conocidas, usando la propiedad de ángulos iguales: y = ·Y .
L
Para calcular el tiempo (t) durante la
aceleración, es decir, el tiempo que tarda el
electrón en atravesar las placas del campo
eléctrico, hay que determinar la velocidad del
electrón en la dirección longitudinal del tubo,
v, y aplicar la expresión: t =
l
. Para determinar v se aplica un campo magnético perpendicular
v
al eléctrico, cuyo polo norte queda fuera del plano del papel, dando lugar a una fuerza
magnética, Fm, que actúa de forma descendente sobre el electrón: Fm= B·q·v .
Si se aplica una intensidad de campo magnético, B, de tal forma que se cumpla Fm=Fe, se
V
·q
d
Sustituyendo en las ecuaciones anteriores:
puede determinar v: B·q·v =
t=
l ·d · B
V
a=
v=
2·l ·Y
2·l ·Y ·V 2
2·Y ·V 2
=
=
L·t 2
L·l 2 ·d 2 · B 2 L·l ·d 2 · B 2
V
d ·B
d
2·Y ·V 2 d
2·Y ·V
q
· =
= a· =
2
2
V L·l ·d · B V L·l ·d · B 2
m
Tema 1: Antecedentes de la Teoría Atómica
-5-
Todos los términos del lado derecho de la última expresión se pueden determinar
experimentalmente y, de esta forma, se puede obtener la relación q/m de los rayos catódicos
(electrones), cuyo valor aceptado es de -1,7589·108 C·g-1.
Tomando en consideración que los rayos catódicos tienen una relación definida q/m,
deben consistir en partículas discretas. Esta relación q/m tiene un mismo valor
independientemente del gas encerrado en el tubo de descarga y del metal de los electrodos
utilizados. Por lo que se puede inferir que los rayos catódicos están formados por partículas
discretas, cargadas negativamente que no dependen de la naturaleza del gas, ni del metal con
que están hechos los electrodos (cátodo y ánodo), es decir, son constituyentes comunes de la
materia; en realidad, corresponden a los electrones. Para conocer los valores de carga y masa
del electrón por separado, bastará con determinar uno de ellos.
* Determinación de la carga del electrón: (R.A. Millikan, 1911)
En 1911 R.A. Millikan, mediante su experimento de “la gota de aceite”, determinó con
bastante exactitud la carga del electrón. En la figura se ilustra el aparato utilizado para tal fin:
Consiste en dos placas metálicas, P y
P´, separadas por una distancia D y
conectadas a una fuente de alta
Rayos X
tensión. Algunas de las gotas de
aceite, producidas por un atomizador,
O
d
P
se introducen en estas placas por un
pequeño orificio, O. Estas gotas se
D
P´
cargan por adsorción de iones gaseosos producidos por la acción de rayos X sobre el aire.
Para el experimento se escoge una gota de aceite que se encuentre entre las placas y que
ascienda al conectarse el campo eléctrico, se observa su movimiento a través de un telescopio
para determinar su velocidad en ausencia y en presencia del campo eléctrico. Para tal fin se
mide el tiempo que tarda la gota en recorrer la distancia d entre las estrías del telescopio.
En ausencia del campo eléctrico, la gota estará sometida solamente a las fuerzas
Fr
movimiento
Fb
FW
de gravedad, Fw, y de flotación, Fb, y cae:
4
Fw = mac · g = ·π ·r 3 · ρ ac · g
4
3
Fneta ( inic ) = Fw − Fb = ·π ·r 3 ·( ρ ac − ρ air )· g
4
3
Fb = mair · g = ·π ·r 3 · ρ air · g
3
Conforme la gota se acelera aparece la fuerza de resistencia del medio, Fr, opuesta
al movimiento, que para una esfera de radio, r, pequeño es: Fr = 6·π ·η ·r·v . Esta Fr
va aumentando hasta que la fuerza neta sobre la gota se anula, y ésta cae con una
Tema 1: Antecedentes de la Teoría Atómica
-6-
velocidad constante, v. Al determinar esa v podremos determinar el radio de la gota de aceite,
de la siguiente manera:
Fneta ( final ) = Fw − Fb − Fr = 0 ⇔ Fr = Fw − Fb
r=
4
6·π ·η ·r ·v = ·π ·r 3 ·( ρ ac − ρ air )· g
3
6·η ·v
( 4 3 )· g ·( ρ ac − ρ air )
v = d /t
En presencia del campo eléctrico, la gota estará sometida, además de a las fuerzas descritas
movimiento
Fb
anteriormente, a la fuerza del campo eléctrico, Fe = E·q = (V D )·q , dando lugar a
una fuerza neta inicial ascendente:
Fe
Fw
4
 Ahora el signo positivo
Fneta ( inic ) = Fe − ( Fw − Fb ) = E ·q −  ·π ·r 3 ·( ρ ac − ρ air )· g 
3
 se considera hacia arriba
A medida que la gota se acelera hacia arriba aparece la fuerza de resistencia en
oposición al movimiento hasta llegar al estado estacionario en el que la Fneta es cero:
Fr F
neta (
final )
= Fe − (Fw − Fb ) − Fr´ = 0
Fr´ = Fe − ( Fw − Fb )
4

6·π ·η ·r ·v´ = E ·q −  ·π ·r 3 ·( ρ ac − ρ air )· g 
3


q=
6·π ⋅ η ·r·v ′ + ( 4 3 )·π ·r 3 · g ·( ρ ac − ρ air )
E
v′ = d / t ′
Al determinar v´, como ya se conoce el radio r de la gota, se puede determinar la carga neta
adsorbida, q, a la superficie de la gota .
Los valores de q que se obtienen para diferentes experimentos son siempre múltiplos enteros
de 1,609·10-19 C. Esto demuestra que la carga electrónica fundamental es 1,609·10-19 C. Con
este valor y a partir del valor de la relación q/m obtenida por Thomson se obtiene una masa
del electrón de 9,11·10-31 kg.
Estos experimentos de Thomson y Millikan se han analizado en detalle porque muestran
cómo se pueden determinar cantidades fundamentales de gran importancia con aparatos
relativamente sencillos y aplicando leyes fundamentales de la física.
1.2.3.- Descubrimiento de los rayos positivos o canales
Otro resultado importante del estudio de la conducción eléctrica en los gases fue el
descubrimiento de los rayos positivos o rayos canales, realizado por Goldstein en 1886. Para
tal fin utilizó un tubo de descarga con el cátodo
perforado por un pequeño orificio o “canal”. Mediante
estudios sobre su comportamiento en campos eléctricos
y magnéticos se demostró que estos rayos canales
estaban formados por partículas cargadas positivamente y que eran características del gas
encerrado en el tubo de descarga.
Tema 1: Antecedentes de la Teoría Atómica
-7-
La relación q/m de estos iones positivos puede determinarse siguiendo un método análogo
al utilizado por Thomson para los rayos catódicos. El aparato usado por W.F.Aston para este
fin recibe el nombre de espectrógrafo o espectrómetro de masas y es el método actual más
preciso para determinar masas atómicas (presencia de isótopos, ...). El aparato se basa en que
todas las partículas cargadas en movimiento se aceleran en una trayectoria circular dentro de
un campo magnético que actúe perpendicularmente a su dirección de desplazamiento. El radio
r r
E ⊥ B1
de la trayectoria circular es proporcional a la masa
r
r
Fe ⊥ Fm
Los rayos positivos creados en el tubo de
del ión, cuando la carga es igual.
descarga se coliman en un fino haz mediante los
r r
E ⊥ B1
colimadores S1 y S2 para posteriormente pasar
simultáneamente por un campo eléctrico (P y P´)
y uno magnético (B1) perpendiculares entre sí y a
la trayectoria de los rayos positivos. Solo las
partículas positivas que no se desvíen de su
trayectoria pasarán por el colimador S3. Para que no se desvíen tienen que cumplir:
Fe = Fm
E ·q = B1 ·q·v
v = E / B1
Es decir, sólo pasarán por S3 y entrarán en el campo magnético B2,
paralelo a B1, aquellas partículas con una velocidad constante v.
En B2 la Fm sobre la partícula estará compensada por la fuerza centrípeta y, a partir de esta
condición, se puede obtener la relación q/m de las partículas positivas:
Fc = Fm
q
v 1
v m
2
=
⋅ =
En B2:
m·v
R=
⋅
= B2 ·q·v
m
B
B
q
2 R
2
R
E
1
⋅
B1 · B2 R
Las partículas positivas de menor masa son los llamados protones, que son átomos de
hidrógeno ionizados, cuya carga es exactamente la del electrón pero positiva (+1,602·10-19 C),
siendo su masa (1,67·10-27 kg) 1836 veces mayor que la del electrón. Hoy en día se sabe que
el protón es una de las partículas elementales constituyentes de la materia.
1.3.- PRIMEROS MODELOS ATÓMICOS
* Modelo atómico de Thomson (1907):
Para proponer un modelo, en este caso del átomo, hay que recopilar toda la información y
resultados conocidos hasta la fecha para dar respuesta a toda esa información con el modelo
planteado.
De esta forma los resultados relacionados con el átomo conocidos hasta la fecha en la que
Thomson propone su modelo atómico son:
Tema 1: Antecedentes de la Teoría Atómica
-8-
- La materia es eléctricamente neutra, por lo que sus partículas constituyentes, los átomos,
también lo son.
- Se ha descrito un tipo de partícula universal, el electrón, con una masa, me ≈ 9·11-31 kg, y
una carga negativa, e ≈ -1,6·10-19 C.
- También se ha descrtio otro tipo de partícula, el protón, con una masa, mp ≈ 1,67·10-27 kg,
y una carga positiva de ≈ +1,6·10-19 C.
- A partir de un simple cálculo se puede estimar el radio atómico alrededor de 10-10 m.
(Volumen molar de un sólido dividido por el número de Avogadro da ≈ 10-24 cm3,
suponiendo una esfera el radio sería de ≈ 10-8 cm).
Con esta información Thomson propone su modelo atómico,
MODELO “PLUM CAKE”
en el que el átomo era una esfera uniforme de electricidad positiva
y radio ≈10-10 m, con los electrones ubicados dentro de esa esfera
de modo que resultara el ordenamiento electrostático más estable.
Este sencillo modelo responde a la información conocida hasta
esa fecha, pero tuvo que ser abandonado en 1911 cuando E.R.
Rutherford demostró que no respondía a las observaciones
realizadas sobre la dispersión de las partículas α por delgadas láminas metálicas.
* Experimentos sobre la dispersión de las partículas α por delgadas láminas metálicas :
En 1909 E.R. Rutherford y su ayudante H. Geiger se plantearon utilizar partículas α
(núcleos de helio, He+2) como sondas para estudiar
Lámina
metálica
la estructura interna de los átomos. Para tal fin
hacen incidir un delgado haz de partículas α sobre
Contador
Fuente de
partículas α
una fina lámina metálica (de ~1 µm de espesor) y
se obtiene la distribución angular de las partículas
dispersadas a distintos ángulos contando los
destellos luminosos que se producen sobre una pantalla de sulfuro de cinc.
Partículas α
Atomo
Rutherford, basándose en el modelo atómico de Thomson,
esperaba que las partículas α atravesarían la fina lámina sin
desviarse,
aunque
algunas
deberían
desviarse
algo
al
encontrarse con los electrones. Cuando H. Geiger y E.
Marsden, un estudiante, realizaron el experimento descubrieron
que la mayoría de las partículas α atravesaban la lámina sin
desviarse, algunas se desviaban ligeramente y otras (alrededor
de 1 por cada 20000) se desviaban en ángulos grandes e incluso “rebotaban”.
Tema 1: Antecedentes de la Teoría Atómica
-9-
Rutherford sabía que la energía cinética de las partículas α era muy grande, por lo que
una desviación grande de estas partículas
debía de ser causada por una fuerza eléctrica
enorme concentrada en un “cuerpo” de masa
considerable; además, como el número de
grandes desviaciones era muy pequeño dichos
cuerpos debían estar confinados en regiones
muy pequeñas del espacio. A partir de estos
resultados Rutherford propone su modelo
“nuclear” del átomo (1911), con las siguientes
características:
- La mayor parte de la masa y toda la carga
positiva del átomo está concentrada en una región
muy pequeña: el núcleo. El resto del átomo, es
MODELO “NUCLEAR”
decir, la mayor parte es un espacio vacío.
- La carga negativa se encuentra en los electrones,
Atomo
Protones y neutrones
y éstos están distribuidos alrededor del núcleo y
girando en órbitas en las que se cumpla que la
fuerza eléctrica del núcleo sobre los electrones
está compensada por la fuerza centrífuga (Fc = Fe).
Núcleo
- En el núcleo, además de la presencia de los
protones, supone la existencia de otras partículas con masa pero sin carga para poder justificar
la masa de los átomos, los neutrones, demostrada su existencia experimentalmente por J.
Chadwick en 1932.
Este modelo responde a la información conocida hasta esa fecha, y justifica los resultados
de la dispersión de partículas α; pero presenta un gran incoveniente: Según la teoría
electromagnética de Maxwell, una carga eléctrica acelerada (como el electrón en su órbita)
tiene que emitir energía de forma continua, y esta pérdida de energía sería a consta de
disminuir el radio de la órbita, de modo que el electrón describiría una especie de espiral hasta
colapsar con el núcleo.
Sólo dos años después (1913) N. Bohr intentó resolver los fallos del modelo anterior
aplicando al análisis de la estructura atómia, la teoría cuántica de la energía propuesta por M.
Planck en 1900. Pero antes de describir el modelo atómico de Bohr y apreciar su
contribución, es importante examinar una serie de experimentos que condujeron a la teoría
Tema 1: Antecedentes de la Teoría Atómica
- 10 -
cuántica de la energía planteada por M. Planck: La radiación del cuerpo negro, el efecto
fotoeléctrico y los espectros atómicos.
APÉNDICE: Radiación electromagnética
La radiación electromagnética es una forma de transmisión de energía en la que los
campos eléctricos y magnéticos
se propagan por ondas a través
Amplitud
del espacio vacío o a través de
un medio. Se produce por
aceleración de una partícula cargada eléctricamente.
Una onda es una perturbación que se propaga a través de un medio. Términos que
caracterizan una onda:
* Amplitud: Máxima perturbación de la onda, es decir, distancia máxima de la onda con
respecto a la línea central de no perturbación.
* Longitud de onda (λ): Es la distancia entre dos máximos, o mínimos, consecutivos de la
onda. Unidades: longitud (m, cm, µm, nm, Å (angstrom)).
* Frecuencia (ν): Es el número de máximos, o mínimos, que pasan por un punto
determinado en la unidadd de tiempo. Unidades: tiempo-1 (s-1=Hz (hercio)).
Una característica de la radiación electromagnética es su velocidad constante de
2,997925·108 m·s-1 en el vacío (velocidad de la luz, c). c = ν ⋅ λ
La radiación electromagnética
presenta dos fenómenos característicos
de
su
naturaleza
interferencia
y
ondulatoria:
difracción.
La
interferencia es una interacción entre
dos o más ondas que viajan en el mismo
espacio,
que
pueden
atenuarse
o
anularse,
potenciarse,
según
la
concurrencia de sus fases. La difracción
es un fenómeno característico de las
ondas que consiste en la dispersión y
curvado aparente de las ondas cuando
encuentran un obstáculo.
Espectro electromagnético Completo
Tema 1: Antecedentes de la Teoría Atómica
- 11 -
1.4.- RADIACIÓN DEL CUERPO NEGRO
Se sabe que los objetos calientes emiten luz, radiación electromagnética, de diferentes
longitudes de onda (λ) en función, fundamentalmente, de su temperatura. Así, al calentar una
barra de hierro a medida que va aumentando su temperatura va cambiando de color, desde el
rojo (λ alta), pasando por naranja y amarillo, hasta el azul (λ baja). Para analizar los espectros
de emisión de los cuerpos se utiliza un cuerpo modelo
denominado cuerpo negro ideal, que se define como aquél
Radiación
detectada
que absorbe toda la radiación que incide sobre él.
Experimentalmente, el cuerpo negro que más se aproxima
al ideal es un diminuto agujero en un objeto hueco, en el
que la radiación que incide sobre ese agujero penetra en la
cavidad y es atrapada (absorbida) por ésta.
Orificio
Material refractario
A la temperatura T
Todos los cuerpos negros ideales emiten un mismo espectro en función de la temperatura,
dando lugar a las leyes de Wien y de Stefan- Boltzmann. El resto de los cuerpos no cumplen
de forma absoluta estas leyes, pero sí sus aspectos cualitativos: Cuanto mayor es la
temperatura, la densidad de energía emitida por unidad de superficie aumenta (ley de StefanBoltzmann) y la λ a la cual es emitida mayor intensidad de radiación disminuye (ley de Wien).
Espectro de emisión típico
de un cuerpo negro ideal
Ley de Stefan-Boltzmann:
et = (1 4 ) ⋅ c·u = σ ·T 4
, uλ
Ley de Wien:
σ = 5,6703·10-8 J/(m2·s·K4)
λmax ·T = 2,8979·10 −3 m·K
uλ: Densidad de energía radiante por unidad de
volumen dentro de la cavidad y por unidad de
intervalo de longitud de onda a la temperatura T.
u: Densidad total de energía radiante por unidad de
u = ∫ u λ ·d λ
volumen.
et: Energía emitida por unidad de área y unidad de
tiempo.
* Interpretación de Rayleigh-Jeans:
Hacia 1900 la teoría electromagnética clásica de Maxwell había establecido firmemente la
naturaleza ondulatoria de la luz, pero no podía explicar el espectro de emisión de un cuerpo
negro. Según esta teoría clásica la energía contenida o conducida por una onda
electromagnética es proporcional a los cuadrados de las amplitudes máximas de las ondas
eléctricas y magnéticas y no depende de su frecuencia o longitud de onda. La interpretación
de la radiación del cuerpo negro realizada por Rayleigh-Jeans a partir de la teoría clásica era
Tema 1: Antecedentes de la Teoría Atómica
- 12 -
satisfactoria para longitudes de onda largas, pero fallaba en el ultravioleta, es decir, para
longitudes de onda cortas (catástrofe ultravioleta). [Para ver el desarrollo de esta
interpretación y la de Planck, ver Tema 19 de “Fisicoquímica” de G.W. Castellán].
* Interpretación de Planck:
En 1900 Planck resolvió la distribución espectral de la radiación del cuerpo negro, pero
apartándose mucho de las leyes clásicas de la física. Para tal fin tuvo que asumir que un
sistema mecánico no puede tener una energía arbitraria, sino sólo ciertos valores de energía
seleccionados (cuantización de la energía). Se creía que una onda electromagnética de
frecuencia υ se irradiaba desde la superficie de un sólido por un grupo de átomos que
oscilaban con la misma frecuencia. Planck supuso que este grupo de átomos (oscilador) tenían
que tener una energía determinada: E=nhν, donde n es un número entero positivo, υ la
frecuencia del oscilador y h la constante de Planck (6,626176 ·10-34 J·s). Esta expresión se
conoce como hipótesis cuántica de Planck, ya que propone que un sistema tiene porciones
discretas (cuantos) de energía. Al irradiar, un oscilador debe perder energía por lo que su n
tiene que ser mayor de cero. Para poder explicar el hecho de que la radiación de alta
frecuencia de un cuerpo sea tan baja, Planck supuso que las energías de los osciladores
estaban distribuidas según la ley de distribución de Boltzmann: la probabilidad relativa de
hallar a un oscilador con energía nhν viene dada por exp (− nhν kT ) .
La idea de la “cuantización de la energía” (existencia de niveles de energía) es difícil de
aceptar, pues está en contradicción con toda la experiencia habitual con sistemas físicos
macroscópicos. Por esta razón, los científicos, incluyendo al propio Planck, desconfiaron
inicialmente de la hipótesis cuántica; para aceptarla como un principio general habría que
probarla en otras aplicaciones y/o experimentos. Una idea, consecuencia de esta hipótesis,
trata sobre la naturaleza de la luz: Si un oscilador sólo puede cambiar de energía en cantidades
discretas emitiendo radiación, entonces esta radiación (luz) es muy probable que esté
compuesta por entidades discretas de energía hν. Esta idea encontró aplicación y apoyo en la
explicación de Einstein del efecto fotoeléctrico.
1.5.- EL EFECTO FOTOELÉCTRICO
Este efecto fue descubierto por Hertz en 1887 y
consiste en que: “Cuando un haz de luz incide sobre una
_
+
placa metálica pulida en el vacío, esta placa puede emitir
electrones”. Según la teoría clásica de la luz era posible que
la energía de la onda electromagnética se pudiera utilizar
Fe
_
+
Tema 1: Antecedentes de la Teoría Atómica
- 13 -
para extraer un electrón del metal, pero no era capaz de explicar los detalles del fenómeno:
• La emisión de electrones por la placa metálica
(fotoelectrones) se produce únicamente cuando la
frecuencia de la luz incidente es mayor que un cierto
valor crítico ν0 (frecuencia umbral).
• Los fotoelectrones emitidos tienen una energía cinética
que aumenta a medida que aumenta el valor de la
frecuencia de la luz incidente.
• Al aumentar la intensidad de la luz incidente aumenta el
Medidas experimentales:
* Voltaje aplicado entre la
lámina y la rejilla, V, que se
opone al desplazamiento de
los fotoelectrones.
* Voltaje de parada, V0, mínimo
voltaje que detiene los
fotoelectrones: (1 2 )·m·v 2 = e·V0 .
* Intensidad
de
corriente
fotoeléctrica, I, número de
fotoelectrones emitidos por
unidad de tiempo.
número de fotoelectrones emitidos por unidad de
ν3>ν2>ν1
tiempo (intensidad de corriente fotoeléctrica) pero no
λ3<λ2<λ1
afecta a la energía cinética de los fotoelectrones.
Según la teoría clásica la energía de la luz es
independiente de su frecuencia y depende de las
amplitudes (intensidad) de los campos eléctrico y
I3>I2>I1
magnético, lo que va en contradicción con los
resultados expuestos anteriormente.
En 1905, Einstein fue capaz de explicar estos
Tensión
resultados suponiendo que la luz, además de su naturaleza ondulatoria, presentaba una
naturaleza corpuscular y estaba compuesta de partículas discretas (fotones) de energía hν. De
esta forma, propuso que cuando un fotón de frecuencia ν incide sobre la superficie metálica,
cede su energía (hν) a un único electrón del metal; parte de esta energía se usa para superar las
fuerzas atractivas existentes entre el electrón y el metal (función
de trabajo, ω, igual a energía umbral, E0=hν0), y el resto de la
energía se transforma en energía cinética del electrón
desprendido. La ley de conservación de la energía implica que:
ω
E inc = ω + E cin = E 0 + E cin
M
lA
eta
M
1
h·ν inc = h ·ν 0 + ·m·v 2
2
lB
eta
Así, al representar la energía de los fotoelectrones en función de
ν
− ωAA
− ωB
la frecuencia incidente, se obtiene una línea recta de pendiente
la constante de Planck, h, y de ordenada en el origen - hν0. Para
distintos metales se obtienen rectas paralelas, ya que cada metal
tiene diferente ω y, por tanto, la frecuencia umbral variará de uno a otro metal. El hecho de
Tema 1: Antecedentes de la Teoría Atómica
- 14 -
que el número de fotoelectrones aumenta con la intensidad de la luz indica que debe asociarse
dicha intensidad con el número de fotones que inciden en el metal por unidad de tiempo.
Mientras que la naturaleza ondulatoria de la luz permite explicar fenómenos como:
dispersión, interferencia y difracción, para poder explicar la radiación del cuerpo negro y el
efecto fotoeléctrico se ha supuesto una naturaleza corpuscular. Si la luz presenta carácter
corpuscular debe tener un momento cinético, p, como toda partícula material. Einsten calculó
dicho momento para el fotón a partir de su “Teoría de la relatividad”:
(
)
2
2
E =  ( p ·c ) + m 0 ·c 2 


1
2
El fotón siempre está en movimiento con una velocidad igual a la de la luz, c, y su masa en
reposo, m0, es nula por lo que su energía, sustituyendo en la ecuación anterior es: E = p·c .
También se ha dicho que la energía del fotón es: E = h ⋅ν ; por lo que igualando estas dos
expresiones y despejando p obtenemos: p = h λ (momento cinético del fotón).
1.6.- ESPECTROS ATÓMICOS
Los espectros atómicos constituyen la fuente de información más importante de los
átomos para los químico físicos. Además prueban de forma concluyente que la energía está
cuantizada. La estructura electrónica de un átomo describe las energías y disposición de los
electrones alrededor del átomo. Gran parte de lo que se conoce acerca de la estructura
electrónica de los átomos se averiguó observando la interacción de la radiación con la materia.
Un espectro es el resultado del análisis de las distintas frecuencias que integran una
radiación electromagnética compleja. Los espectros se obtienen con un espectroscopio o
espectrógrafo, que es un aparato que permite
descomponer la radiación compleja en sus
componentes
más
simples
y,
mediante
impresión en una placa, poder analizar las
frecuencias de esas radiaciones simples. Hay
diferentes tipos de espectros y clasificaciones:
Espectro de emisión
• Según el origen de la luz a estudiar:
• De emisión: Se analiza la radiación
emitida por una muestra previamente
excitada.
• De absorción: Se analiza la radiación
restante después de pasar por la muestra,
es decir, la radiación no absorbida.
Espectro de absorción
ESPECTROSCOPIA DE EMISIÓN Y DE ABSORCIÓN.
Se representa un esquema de un espectrógrafo de prisma.
Tema 1: Antecedentes de la Teoría Atómica
- 15 -
De acuerdo a la Ley de Kirchoff: “ Cualquier sustancia en estado gaseoso o de vapor
absorbe a cualquier temperatura las mismas radiaciones que sería capaz de emitir en
estado excitado” (ESPECTRO DE EMISIÓN ≡ ESPECTRO DE ABSORCIÓN)
• Según el aspecto del espectro obtenido:
• Continuos: Característicos de muestras sólidas y líquidas.
• Discontinuos: Característicos de muestras en estado gas que, a su vez, pueden ser:
• Espectros de bandas: Característicos de moléculas en estado gaseoso.
• Espectros de líneas: Característicos de átomos en estado gaseoso.
Así, los espectros atómicos constan de una serie de líneas que indican la frecuencia de las
radiaciones simples que el átomo emite o absorbe. Como se ha indicado antes, estos espectros
atómicos constituyen la prueba más clara de que la energía emitida o absorbida por los
átomos puede tomar ciertos valores pero no todos, es decir, dicha energía está cuantizada.
Las líneas espectrales son características de cada elemento (“huellas dactilares”),
independientemente de que esté mezclado con otras sustancias, lo que permite averiguar la
composición química de las sustancias.
A continuación vamos a describir el espectro atómico más sencillo, el del hidrógeno.
* Espectro del hidrógeno atómico:
La parte del espectro del hidrógeno que
primero se conoció y describió fue la del
visible. En él aparecen, entre otras, cuatro
líneas dominantes. La distancia e intensidad
entre
líneas
consecutivas
disminuye
a
n= 3
4
5
6
∞
medida que aumenta la frecuencia, hasta llegar a un límite. En 1885 J. Balmer propuso una
expresión empírica para relacionar la posición de estas líneas espectrales, es decir, para
describir sus longitudes de onda, λ: υ = 1 = RH · 12 −
Rydberg para el átomo de H.
λ
2
1

n2 
; RH = 109677,6cm-1, constante de
Posteriormente se describieron nuevas regiones del espectro atómico del hidrógeno,
observándose que las líneas espectrales aparecían en grupos, denominados series, y cuyas λ
pueden describirse por una fórmula general. La distribución de las líneas espectrales siguen
Fórmula general para sistemas hidrogenoides
2
1 1
− 2
TÉRMINOS
2

 ni n j  ESPECTROSCÓPICOS
υ = Rat ·Z 2 ·
υ = Ti − Tj
un patrón análogo para cualquier
sistema hidrogenoide, que se
Z
Ti = Rat ·  SERIE define
 ni 
2
como:
aquél
sistema
formado por dos partículas: una
Z
T j = Rat ·  LÍNEA
n 
con carga positiva +Z·e y la otra
 j
Tema 1: Antecedentes de la Teoría Atómica
con carga negativa –e; Z es un número entero positivo y
e la carga del electrón (1,602·10-19 C). Rat es la constante
de Rydberg para el sistema hidrogenoide, que varía
ligeramente su valor dependiendo del sistema. Esta
fórmula puede expresarse como suma de dos “términos
espectroscópicos: uno caracterizado por ni que es un
número entero positivo, que indica la serie, y otro
caracterizado por nj que describe la posición de la línea
- 16 Valores de la constante de Rydberg
para diversos sistemas hidrogenoides
Sistema
hidrogenoide
Rat (cm-1)
H
D
He+
Li+2
Be+3
Hidrogenoides muy
pesados (R∞)
109677,6
109707,4
109722,3
109727,3
109730,6
109737,3
espectral dentro de la serie; cumpliéndose siempre: ni < nj.
ni = 5 (nj: 6, 7, 8, ...) (IR ordinario)
ni = 4 (nj: 5, 6, 7, ...) (IR próximo)
ni = 3 (nj: 4, 5, 6, ...) (IR muy próximo)
ni = 2 (nj: 3, 4, 5, ...) (Vis y UV próx)
ni = 1 (nj: 2, 3, 4, ...)
(UV lejano)
Diversas series del espectro atómico del hidrógeno
1.7.- EL ÁTOMO DE BOHR
N. Bohr (1913) fue el primero en presentar un modelo atómico sencillo capaz de explicar
los espectros atómicos lineales, es decir, por qué únicamente ciertas frecuencias de luz eran
irradiadas por los átomos; e incluso calculó teóricamente con bastante exactitud los valores de
estas frecuencias para átomos hidrogenoides. Para desarrollar su modelo atómico partió de las
siguientes ideas: en el dominio atómico eran válidas las leyes de Coulomb y de Newton, la
teoría electromagnética clásica dejaba de ser válida, y que la emisión de la energía por los
átomos tenía que analizarse desde la teoría cuántica de Planck. Sus razonamientos se plasman
en los siguientes postulados:
1.- En un átomo, los electrones giran en torno al núcleo en ciertas órbitas circulares
estacionarias con una energía fija y definida, es decir, sin emitir energía radiante. Estas
órbitas presentan estabilidad mecánica, cumpliendo que la fuerza coulómbica, Fe, entre el
electrón y el núcleo está equilibrada por la fuerza centrífuga del movimiento circular, Fc.
2.- El átomo emite energía cuando un electrón cambia de una órbita de mayor energía a
otra de menor energía; esta energía se emite en forma de un cuanto de radiación cuya energía
hν es igual a la diferencia de energías entre ambas órbitas, estados energéticos.
Tema 1: Antecedentes de la Teoría Atómica
- 17 -
3.- Los electrones sólo pueden girar en órbitas en las que su momento angular está
cuantizado en múltiplos enteros de h/2π, es decir, tiene que cumplirse: m·v·r = n·h/2π=n·ħ.
En resumen podemos decir que los electrones se disponen en diversas órbitas circulares
que determinan diferentes niveles de energía. La teoría de Bohr predice los radios de las
órbitas permitidas en un átomo de hidrógeno; también permite calcular las velocidades del
electrón en estas órbitas, y la energía. Vamos a deducir la expresión de las energías de los
estados estacionarios permitidos y, a partir de hay explicar los espectros atómicos de los
átomos hidrogenoides.
* Cálculo de los radios de las órbitas permitidas:
Teniendo en cuenta el primer postulado: Fe = Fc, es decir:
− Z ·e 2
− m ·v 2
=
4·π ·ε 0 ·r 2
r
Según el tercer postulado: m·v·r = n·h/2π ; despajando la velocidad: v = n·
h
; y
2·π ·m·r
2
sustituyendo en la anterior expresión obtenemos:
simplificando y despejando el radio de la órbita, r:
n=1
a0
n=2
4a0
n=3
9a0
Distancia de las tres primeras órbitas atómicas
del hidrógeno, según modelo de Bohr.
− Z ·e 2
−m 
h 
=
⋅  n·
 ; que
2
r  2·π ·m·r 
4·π ·ε 0 ·r
h 2 ·ε 0 n 2
n2
r= 2
· = a0 ·
Z
e ·π ·m Z
Radio de Bohr: a0=0,52918Å
n se denomina número cuántico de Bohr y toma
valores enteros positivos diferentes de cero.
* Cálculo de las energías de las órbitas permitidas:
En ·1019 (J/átomo)
La energía total, ET, del electrón es la suma de su energía potencial, Ep, y su energía
2
− Z ·e 2 1
cinética, Ecin: ET = E p + Ecin =
+ ·m·v 2 . Del cálculo de los radios: m·v 2 = Z ·e ;
4·π ·ε 0 ·r 2
4·π ·ε 0 ·r
y sustituyendo en la energía total:
− Z ·e 2
1  Z ·e 2 
1 Z ·e 2


+
ET =
=− ·
4·π ·ε 0 ·r 2  4·π ·ε 0 ·r 
2 4·π ·ε 0 ·r
Y aplicando el valor del radio:
1 Z ·e 2
Z
− Z 2 ·e 2 1
ET = − ·
·
→
En =
·
2 4·π ·ε 0 a 0 ·n 2
8·π ·ε 0 ·a0 n 2
Como resultado, la energía total del átomo de
hidrógeno de Bohr es negativa e igual a la mitad
de la energía potencial. Sólo determinadas
energías están permitidas y vienen determinadas
por el número cuántico de Bohr, n, también
Tema 1: Antecedentes de la Teoría Atómica
- 18 -
denominado número cuántico principal.
* Interpretación del espectro de emisión del hidrógeno:
Según el segundo postulado del modelo de Bohr la emisión de radiación se va a producir
cuando el electrón pase de una órbita de mayor energía a otra de menor, y la energía de la
radiación será igual a la diferencia de energías. Vamos a realizar un cálculo general para el
paso del electrón de una órbita con n=nj a otra con n= ni (siendo nj > ni):
La diferencia es el valor del estado final menos el del inicial, lo que va a dar un valor negativo
2
2 

indicando que el sistema pierde, emite, energía: ∆ E ji = E i − E j = − e · Z · 12 − 12 
8·π ·ε 0 ·a 0  n i n j 
Como la energía del cuanto de radiación emitido viene dada por: E = h·ν = h·c / λ = h·c·ν ,
siempre es una cantidad positiva, por lo que para igualar expresiones hay que tomar el valor
2
2


absoluto: ∆E ji = e · Z · 12 − 12  = h ·c·ν
8·π ·ε 0 ·a 0  n i
n j 
; y despejando: ν = 1 =
λ
 1
1 
e 2 ·Z 2
· 2 − 2 
8·π ·ε 0 ·a 0 ·h ·c  n i
n j 
Para comparar esta expresión teórica, obtenida a partir del modelo atómico de Bohr, con la
correspondiente obtenida empíricamente de los espectros lineales de sistemas hidrogenoides,
podemos reunir las constantes bajo el término RB, constante de Rydberg predicha por Bohr:
e2


−1
1
1
1
, que corresponde a R∞.
ν = = R B · Z 2 · 2 − 2  RB = 8·π ·ε ·a ·h·c = 109737 ,3cm
n
0 0
λ
n 

i
j

Se observa una correspondencia muy buena entre ambas expresiones, empírica y teórica, con
la pequeña excepción del valor de la constante de Rydberg. En el espectro de emisión ni, que
caracteriza la Serie espectral, es el valor del número cuántico principal del estado energético
de llegada y nj, que determina la línea
dentro de la Serie, es el valor
correspondiente del estado de partida,
cumpliéndose nj > ni. Hay que indicar
que en un espectro atómico de
absorción la explicación es análoga,
únicamente que el estado de partida
tiene un valor de n mayor que el de
llegada, por lo que nj corresponde al de
partida y ni al de llegada.
Empíricamente se observa que el valor
de la constante de Rydebrg varía
Correspondencia entre el modelo atómico de Bohr
y el espectro atómico del hidrógeno
dependiendo del sistema hidrogenoide, mientras que Bohr predice un valor constante (igual a
R∞). Esta discrepancia se corrige introduciendo el efecto del movimiento del núcleo (sistema
Tema 1: Antecedentes de la Teoría Atómica
- 19 -
de dos cuerpos que giran alrededor del centro de gravedad del sistema), para tal fin se utiliza
la masa reducida (µ) del sistema en lugar de la masa del electrón (me): µ =
Rat = RB
m n ·m e
. Así:
mn + me
µ
Cuando la masa del núcleo fuese infinitamente mayor que la del electrón µ≈
me
me y entonces se cumple: Rat=R∞=RB.
El modelo atómico de Bohr explica muy bien los espectros atómicos del hidrógeno y de
sistemas hidrogenoides, pero no puede explicar los de átomos y/o iones con más de un
electrón (multielectrónicos). Incluso no puede explicar los espectros del hidrógeno en
presencia de campos magnéticos externos (efecto Zeeman). A pesar de que se realizaron
modificaciones del modelo de Bohr introduciendo: la masa reducida, propuesta de órbitas
elípticas, ... (Teoría cuántica antigua), seguía habiendo fallos, de los cuales el más importante
es la imposibilidad de explicar el comportamiento de los átomos multielectrónicos. Se van
acumulando evidencias de que las propiedades de los electrones en los átomos no se pueden
explicar utilizando la Mecánica Clásica, como lo había hecho Bohr; se requiere un nuevo
abordaje: la Mecánica Cuántica.
APÉNDICE: Problema de dos cuerpos (masa reducida)
Consideremos un sistema aislado de dos partículas interactuantes, es decir, donde no
existe fuerza externa que actúe sobre ellas; ejemplos: la luna y la tierra aislados, un proton y
un electrón en un átomo de hidrógeno aislado.
Sobre la partícula de masa m1 actúa la fuerza F12, y sobre
la partícula de masa m2 actúa la fuerza F21; ambas son iguales
y de sentido contrario (F12 = -F21). Las ecuaciones del
movimiento de cada partícula relativas
a un observador
externo (inercial) son: F12 = m 1 · a 1 ⇒ a 1 =
F 21 = m 2 · a 2 ⇒ a 2 =
F12
m1
F 21
F
= − 12
m2
m2
El movimiento de ambas partículas lo podemos reducir al movimiento de una de ellas con
respecto a la otra. Así, la aceleración relativa de la partícula 1 con respecto a la 2 se puede
 m + m2
 1
F12
− F12
1 
 = F12  1
−
= F12 
+
 m ·m

m1
m2
1
2

 m1 m 2 
m1 ·m2
Se denomina masa reducida del sistema, µ, de dos partículas a: µ =
m1 + m2
expresar como: a 12 = a 1 − a 2 =




Así, podemos escribir la ecuación del movimiento anterior como: F12 = µ ·a12
El movimiento relativo de dos partículas sometidas únicamente a su interacción mutua es
equivalente al movimiento, respecto de un observador inercial, de una partícula de masa igual
a la reducida y bajo una fuerza igual a la de interacción.
Descargar