Fuerza elastica

Anuncio
El rozamiento entre dos superficies en contacto ha sido aprovechado por nuestros
NO ME SALEN
APUNTES TEÓRICOS Y EJERCICIOS RESUELTOS DE FISICA DEL CBC
Ley de Hooke
FUERZAS ELÁSTICAS
Empecemos por entender a qué se llama un cuerpo elástico: es aquel que después
de deformarlo recupera por sí solo su forma original. Por ejemplo, una pelota de
fútbol: uno puede aplastarla un poco ejerciendo una fuerza sobre ella (dos fuerzas,
en general); a esa fuerza vamos a llamarla fuerza deformante. Cuando uno retira la
fuerza deformante la pelota recupera su forma esférica.
No siempre los cuerpos elásticos se comportan en forma elástica en todas
direcciones de las deformaciones como el caso de la pelota. En esta lección vamos a
trabajar con cuerpos que se comportan elásticamente en una sola dirección (y en
ambos sentidos). Se trata de los resortes ideales (en la jerga, simplemente:
elásticos).
La elasticidad de los resortes se manifiesta en su dirección longitudinal (si lo
aplastás de costado lo más probable es que te quedes sin resorte). Como te
imaginás para comprimirlo o estirarlo hay que hacer fuerza en ambos extremos.
Pero para entender el funcionamiento de los resortes conviene que experimentemos
en un sólo extremo, así que vamos a apoyarlo contra una pared y ahí lo pegamos
con poxipol 10 minutos (no tenemos todo el día). Trabajaremos sólo en el extremo
libre.
Cuando una fuerza deformante actúa sobre un elástico, el elástico responde sobre el
cuerpo que lo deforma con una fuerza igual y opuesta. No es que los elásticos sean
vengativos, sino que, como todos los cuerpos del universo, están obligados a cumplir
con la tercera Ley de la Dinámica: el Principio de Acción y Reacción. A esa fuerza
que hacen los elásticos se la llama fuerza elástica.
un cuerpo plástico
no recupera su
forma original
La fuerza que hace el elástico (la fuerza
elástica) la representé en verde. Y la
fuerza deformante en rosa.
Las deformaciones (representadas con
flechas negras) se miden siempre desde
de posición de la última espira del resorte
cuando no está perturbada por fuerzas
externas (en la jerga: libre, sin carga, en
reposo, y otras expresiones). Hice una
marca roja en el piso indicando la posición
desde la que medimos la deformación.
Cuanto mayor es la fuerza deformante
más se deforma el elástico, y también
mayor es la fuerza elástica. El señor
Robert Hooke (1635-1703), encontró que
la deformación y la fuerza elástica eran
directamente proporcionales.
Fe ~ Δx
Esto vale tanto para los estiramientos o
elongaciones como para las
compresiones.
La fuerza elástica y la deformación del
elástico siempre tienen sentidos opuestos.
Considerando esto, y considerando que cada resorte en partricular se estiraba (o se
comprimía) de modo diferente a los otros sometidos a una misma fuerza deformante
es obvio que el factor de proporcionalidad debía ser una constante que dependiera
de cada resorte en particular. El resultado de esto es la Ley de Hooke:
Fe = – k . Δx
En la que k es la constante elástica, un valor que representa a cada resorte, que se
mide en N/m o cualquier otra unidad de fuerza dividida por una unidad de longitud;
y es mayor cuanto más duro y robusto sea el resorte, y menor cuanto más flacucho
y debilucho sea.
Los signos que llevan las fuerzas en las ecuaciones de Newton dependen de la
discusión que realices en el DCL y del sistema de referencia que arbitrariamente
elijas para resolver los ejercicios. A partir de ahí cada fuerza se comporta como un
ente algebraico: no podés volver a cambiarle su signo arbitrariamente. De modo que
yo te recomiendo usar la ley de Hoock sólo en módulo, Fe = k . Δx, sin el signo
menos, que oscurece más que aclara, induce a error demasiadas veces. Siempre es
más práctico y sencillo trabajar los sentidos de las fuerzas visualmente que
analíticamente.
CHISMES IMPORTANTES:




Los resortes ideales se pueden estirar tanto como se precise y comprimir
también tanto como se necesite, que siempre van a responder con fuerzas
elásticas hookianas y siempre van a recuperar su longitud ideal. Todo el
mundo sabe que los resortes de verdad no cumplen con ese requisito. El
rango de deformaciones en el que un resorte de verdad se comporta como
uno ideal se denomina período elástico. muchos resortes de verdad, aún
trabajando dentro de su período elástico, se desvían considerablemente de
la Ley de Hooke: no son lineales.
En muchos textos, y en varios ejercicios de este sitio, se toma en cuenta la
longitud del resorte. Y se distingue la longitud natural, o longitud sin carga,
o longitud sin deformación, lo , de la longitud que adopta cuando está
deformado, l; resulta obvio que Δx = l – lo.
Como la longitud es una magnitud de fácil medida los resortes hoockianos
se convirtieron en el instrumento de medida de las fuerzas más confiable y
seguro. El adminículo recibe el nombre de dinamómetro y constan de un
par de ganchos, un extremo del resorte fijo en una regla y el otro extremo
con una aguja deslizante sobre la misma regla.
Las balanzas a resorte (dinamómetros) miden fuerzas; en cambio las
balazas de brazos o platillos miden masas usando el principio de
comparación. Las balanzas digitales modernas utilizan una propiedad
material llamada piezoelectricidad.
PREGUNTAS CAPCIOSAS:


Si quiero pesarme en la Luna, ¿puedo usar una balanza de platillos?, ¿puedo
utilizar un dinamómetro? ¿Qué adminículo utilizan los astronautas para
medir masas o pesos dentro de la nave espacial?
¿Es posible que Robert Hooke haya disputado con Newton la paternidad de
la Ley de Gravitación Universal? ¿Será Hooke uno de los gigantes?
dinamómetro
Descargar